
LA-1 0966-MS
c* 3

CIC
F

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-?b. - n m

Los Alamos National Laboratory
Los Alamos,New Mexico 87545

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

An Aflirmative Action/Equal Opportunity Employer

This work was supported by the US Department of Energy, Office of Safeguards and
Security, Computer and Technical Security Branch.

Prepared by Sharon Hurdle, Group N-4

DISCLAIMER

This report was prepared as an account ofwork sponsored by an agency ofthe United Slates Government.
Neither the United States Government nor any agency thereof, nor any oftheir employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,
or usefulness of any information, apparatus, product, o r processdisclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product, process, o r service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The
views and opinions ofauthors expressed herein do not necessarily state or reflect those ofthe United States
Government or any agency thereof.

LA-1 0966-MS

UC-32
Issued: November 1987

DES Cryptographic Services Designed for the
DOE Wide Band Communications Network

Blaine Burnham

Los Alamos National Laboratory
Los Alamos,New Mexico 87545

CONTENTS

ABSTRACT

I. INTRODUCTION

11. THE PROBLEM

111. KEY MANAGEMENT

IV, THE CENTRALIZED KEY MANAGEMENT

V. NODE-SPECIFIC KEY MANAGEMENT

VI. THE CIPHER PROCESS

VII. SUMMARY

REFERENCES

APPENDIX A: DESCRIPTION OF THE DATA STRUCTURE

APPENDIX B: LISTINGS OF ALL THE SOFTWARE THAT CONSTITUTES
THE WCS

APPENDIX C: USERS GUIDE

1

1

2

8

9

12

12

13

13

15

25

10 7

V

WBCN Acronym List

CAD

CAE

CAM

CIM

CM

CP

DBMS

DCL
DEC
DECne t

DES

INGRES

IS0

KEYINDEX

KEYMGR

KMM

LS

N

NBS

NK
NODETABLE

NP

NS

NSA

NSP

NWC

os I
PRDTABLE

PTRTABLE

RN

WBCN

WCP

wc s

Computer aided design

Computer aided engineering

Computer aided manufacturing

Computer integrated manufacturing

Communication mechanism

Cryptographic processing

Database management system

DEC command language
Digital Equipment Corporation

DEC networking software product

Data Encryption Standard

DEC database management system product

International Standards Organization

Key index table in KEYMGR database

Key management database

Key management machine

Link encryptor

Number of participating nodes

National Bureau of Standards

Number of keys allocated per period

Node name table in KEYMGR database

Number of periods

Network services

National Security Agency

Network Services Protocol

Nuclear Weapons Complex

Open systems interconnect

Period table in KEYMGR database

Pointer table in KEYMGR database

Routing node

Wideband Communications Network

WBCN communications protocol

WBCN cryptographic service

vi

DES CRYPTOGRAPHIC SERVICES DESIGNED FOR THE
DOE WIDE BAND COMMUNICATIONS NETWORK

Blaine Burnham

ABS TRACT

To exchange information between separate facilities of the
Nuclear Weapons Complex quickly, accurately, and in computer-
readable form, the Department of Energy (DOE) has built a secure
data communications facility called the Wide Band Communications
Network. The network proper achieves security by using high-
grade encryption for the communications links and strict physi-
cal security measures at the nodes. To provide need-to-know
separation among various elements and users of the network,
data are encrypted before transmission using the National Bureau
of Standards' Data Encryption Standard (DES) algorithm. The
software described here provides the key management, key dis-
tribution, and cipher processing for this network.

I. INTRODUCTION

The Nuclear Weapons Complex (NWC)/Wide Band Communications Network
(WBCN) is a wide area network being implemented to enable, at least ini-
tially, the integration of NWC CAD/CAM/CAE and manufacturing functions as
computer integrated manufacturing (CIM). This network is intended to pro-
vide the connectivity among the NWC facilities required by the CIM project.

Each node on the WBCN will use a Digital Equipment Corporation (DEC)
VAX 11/750 computer as a dedicated gateway. These gateways will be the
sole entry point for each facility to the network. The WBCN will use the
DECnet communications protocol between the gateways. Because of the his-
toric autonomy of the Department of Energy (DOE) contractors, a variety of
mechanisms will be used to communicate between the dedicated gateway and
the local information processing facilities. Each gateway will operate in
a protected environment accessed only by Q-cleared or escorted personnel.
The gateways will not contain any user accounts and will execute only dedi-
cated processes.

The communications links between gateways will be protected by the
appropriate link encryption. However, as a limitation of link encryption,
any information that traverses a gateway will do so in a cleartext form.

1

A few of these gateway machines are so positioned that they also serve as
routing nodes. This means that information not destined for the facility
at that gateway must pass through the gateway. The WBCN cryptographic
service (WCS) is designed to provide a mechanism for preserving the con-
fidentiality of the routed information as it traverses the gateways of
intermediate facilities.

Like any other cryptographic implementation, the WCS has had to deal
with the problem of key distribution and coordination as well as providing
the cryptographic services. The remainder of this report describes the
details of the problem and in doing so outlines the constraints and re-
quirements for the solution. This description is followed by a detailed
discussion of the mechanism that has been developed to address the prob-
lem. Appended to this report are a description of the data structure
(Appendix A), a listing of all the developed software (Appendix B) , and a
users guide (Appendix C) .
11. THE PROBLEM

The establishment of the WBCN within the DOE has brought forth a
well-recognized difficulty with multiuser switched communications networks.
That difficulty is how to maintain the confidentiality of a message ex-
changed between two participants when the data path is exposed, to some
degree, t o an intermediate third party.

The simplest case is that of just two legitimate participants (users
A and B) and a communications mechanism connecting them (Fig. 1). In this
configuration there is no problem. Anything that A sends to B can go
nowhere else and vice versa. The situation becomes more complicated if
there is an intruder (D) who attempts to intercept the information on the
communications medium (Fig. 2). The efforts of D can be effectively
thwarted by employing various techniques to harden the communications
medium. These techniques include a variety of physical alterations, for
example, routing the communications medium through a protected distribution
system, thereby denying access or considerably reducing the apparent infor-
mation content of the signal. For example, A or B might apply crypto-
graphic processing to the information before it enters the communications
medium (Fig. 3) .

Without access to the protected cryptographic variable, the informa-
tion content of the signal will appear to be worthless to D, thus maintain-
ing the confidentiality of the message shared by A and B. This form of
cryptographic protection is called link encryption because the communica-
tions link between A and B is protected by the cryptographic application.
It is important to note that link encryption affects all data on the link.

The situation becomes yet more complicated if C is a legitimate user
of the communications medium and has need to exchange information with the
other participants. Such a configuration is shown in Fig. 4. In this
configuration, a participant (node) can support a connection with a single
other node and thwart the efforts of an external intruder (D) to capture
information from the communications media. However, if the cryptographic
variable information (key) is available to all the nodes, there can be no
private two-party communications because the third party would be able to
eavesdrop on the communications media.

2

Fig. 1. The simplest case is that of just two legitimate participants
(users A and B) and a communications mechanism (CM) connecting
them.

CM

Fig. 2. The situation becomes more complicated if there is an intruder
(D) who attempts t o intercept the information on the communi-
cations medium.

CM

Fig. 3 . These techniques include a varietypf physical alterations, for
example, routing the communications medium through a protected
distribution system, thereby denying access to the medium, or
considerably reducing the apparent information content of the
signal on the communications medium, for example, by applying
cryptographic processing (CP) to the information before it
enters the communications medium.

3

CM

Fig. 4 . The situation becomes yet more complicated if C is
a legitimate user of the communications medium and
has need t o exchange information with the other
participants.

The requirement to provide confidential two-party communications among
the three nodes in Fig. 4 can be met by using creative key management. In
particular, if the keys shared by A and B are unavailable to C, the re-
quirement is met. The most significant shortcoming of the Fig. 4 configu-
ration is the inability to support concurrent connections among all the
nodes.

The requirement that each node be able to maintain concurrent communi-
cations with each of the other nodes results in a connection configuration
much like that shown in Fig. 5. This configuration does not require the
complicated level of key management posed by the model shown in Fig. 4 ;
furthermore, it supports concurrent connections with each of the partici-
pants. This configuration does require the replication of crypto devices
for each of the participants. If there are n nodes, then (n2 - n) devices
and (n2 - n)/2 communications links are required. However, such a con-
figuration provides a secure, attainable, and to some extent practical
solution to the problem of providing two-party confidentiality among the
nodes. Its shortcoming is that the cost increases as the square of the
number of nodes.

The link encryption solution fails if the requirements are extended
to include a routing node in the communications path as shown in Fig. 6 .
There is no link encryption solution that will provide confidential two-
party communications in this configuration. This configuration is very
typical of packet switched multinode communications networks. In such a
network, it is frequently the case that not every node has a separate,
unique connection to every other node in the network. Among other things,
this would require (n2 - n)/2 connections. The network solution to re-
ducing the required number of connections is to provide a mechanism that
allows a message originating at A and destined for B to be routed through
C. This mechanism represents an enormous increase in sophistication of
the network over the previous models.

4

Fig. 5. The additional requirement that each node be able to maintain
concurrent communications with each of the other nodes re-
sults in a connection configuration.

Fig. 6. The link encryption solution fails if the requirements are
extended to include a routing node (RN) in the communica-
tions path.

5

The basic element required to implement this mechanism is the ability
to append an “addressing label” to the message sent by A to B such that C
can interrogate this label, decide to accept or reject the message (that
is, determine that the message is not being sent to C), and then forward
the message to B. The critical part of the mechanism is that the message
has a label and any node can read it. For that reason, link encryption
will no longer provide the required pairwise confidentiality between A and
B. If link encryption is interposed from A to B, then C cannot read any
of the message, in particular the label. Hence, C would be unable to for-
ward (route) the message on to B. If the link encryption is imposed from
A to C and then from C to B, C is able to violate the A to B confidential-
ity because the entire message is in cleartext at C. The configuration
shown in Fig. 6 is typical of the WBCN. The solution to preserving two-
party confidentiality in a network that includes routing is to provide for
the encryption of the message while leaving the label unencrypted. In this
way, the routing node has access to the necessary information without being
able to read the message. There are two basically different approaches
that accomplish this end.

One approach to meeting the requirement is to endow the link encryptor
with considerable sophistication to enable it to read the entire data
transmission stream; distinguish between the label and the message; cipher-
process the message, in place; and transmit the message with the cleartext
label over the network.

Another approach intercepts the message in the process of being
labeled, encipher-processes the message at interception, and proceeds with
the labeling and transmission. In either case, there are nontrivial prob-
lems of synchronizing the encipherment processing and providing for key
distribution.

The approach, called embedded encryption, permits a variety of tech-
niques of application. This is the approach used to provide for the WBCN
cryptographic services. In order to provide a more complete understanding
of this approach to message protection, there is another aspect of communi-
cations that needs to be introduced--that is, the notion of communications
protocols. A communications protocol is a procedure for communicating
between two or more nodes on a network. This procedure is usually sub-
divided into functionally specific subsets or layers, Each layer imple-
ments a specific collection of tasks that identify and label the message
and ensure the correct, accurate delivery of the message over the network.
The lowest layer of a protocol deals with the physical communications
requirement. The most abstract layer provides an interface to the various
user-created or -invoked processes operating on the application machine.
The International Standards Organization has developed a seven-layer model
of communications protocols. This is the open system interconnect stan-
dard, ISO/OSI.l DECnet,P the protocol used on the WBCN, implements
most of the functions of this standard. DECnet has a five-layer architec-
ture and is moving toward alignment with the ISO/OSI seven-layer architec-
ture.

The embedded encryption method of providing confidentiality on the
network requires that the cipher processing be implemented somewhere in
the DECnet protocol before the layer that creates and checks the routing
information. This implementation results in cryptographic protection of

6

the message while leaving the routing information available for interpreta-
tion by the routing processes. For the WBCN requirements, the most desir-
able implementation would be in the Network Services Protocol (NSP) layer
of DECnet. Such an implementation would be transparent to the WBCN yet
provide the required message confidentiality.

A prototype of such implementation has been created. This NSP imple-
mentation required a considerable modification of the standard DECnet and
the development of custom hardware. Although this prototype was the most
desirable solution, it was not acceptable because the modified DECnet was
not supported by a vendor and could not be supported within the constraints
of the WBCN project. The remaining alternative has been to do the cipher
implementation at the user protocol level. This is the option used for
the WBCN cipher services. These services consist of three distinct ele-
ments: centralized key distribution, node-specific key management, and
encryption/decryption service utilities. A schematic of the generic WBCN
crypto services is shown in Fig. 7.

In this configuration, the network processing for each participant is
contained within a secure environment (dotted line). The information in
the communication links is protected by the link encryptors imposed on all

‘A

I
I

I
I
I
I

Fig. 7. A schematic of the generic WBCN crypto services (WCS)
with the network communications services (NS) and
link encryptors (LS).

7

lines. The WCS is available to the application level processes for utili-
zation by the WBCN communications protocol (WCP) that is being developed
to enable the various WBCN functions (for example, file push). The WCP
does the cipher message processing before invoking the network communica-
tions services. In this fashion the network processing is not interrupted.
The WCS is composed of three distinct elements, two of which are located
on each node in the network; the third runs on a single dedicated machine.

The single dedicated element is the centralized key management. The
two elements shared by each node are the node-specific key management and
the cipher processes.

111. KEY MANAGEMENT

The key management structure and implementation form the foundation
for the success or failure of any cipher-processing service. There is a
tendency for key management schemes to become very complex very quickly.
This tendency must be resisted at every turn. The key management scheme
for the WCS is the critical element that actually enforces the required
message confidentiality. The key management extracts, from a pool of
available keys, mutually distinct sets of keys, a set for each node. Only
the keys that that node will use to communicate with any other node are in
its set. However, the node receives none of the keys used between any
other pair of nodes. This key partitioning is illustrated in Fig. 8.

I ALL KEYS

Fig. 8. The key management extracts, from a pool of available keys,
mutually distinct sets of keys, a set f o r each node. Only
the keys that that node will use to communicate with any
other node are in that set. However, the node receives
none of the keys used between any other pair of nodes.

8

In this example, there are three nodes, each with the requirement to
have confidential communications with each of the other two nodes. The
keys labeled A-B are those to be used between nodes A and B; A-C are those
used between nodes and A and C; and B-C are those used between B and C.
Under the WBCN key management implementation, node A received key sets A-B
and A-C; node B received key sets A-B and B-C; and node C received key
sets B-C and A-C. Observe that with this scheme nodes B and C share keys
that node A does not possess. Thus, B and C can exchange encrypted mes-
sages that A cannot decipher for lack of the key.

There are a number of constraints that have contributed to the design
of the implementation of this scheme. Any Data Encryption Standard (DES)
application within the DOE currently is required to utilize cryptographic
variables approved or supplied by the National Security Agency (NSA). In
the case of the WCS, an agreement was negotiated with NSA for them to
supply DOE with the keys. The keys are delivered, in bulk, on magnetic
tape

The WCP must be able to synchronize the key variable application. The
two participants must have some means of identifying which key to apply to
a particular message. The keys must have some form of frequency-of-use
management so that the same key is not used with many consecutive messages.
The key management must be simple and robust enough to withstand operation
by an ever-changing operation staff. From a practical point of view, it
was apparent that this key management would have many of the same require-
ments as a conventional data management task. The key management element
has been developed with these constraints in mind. An initial decision
was made to use a single database management system (DBMS) product to
facilitate the whole WCS. INGRES was the DBMS chosen for the WCS. The
key management was achieved primarily with DIGITAL command language (DCL)
command files, FORTRAN programs, and INGRES s c r i p t s .

In part, these constraints determine the steps of the logic and infor-
mation flow of the key management scheme. These steps are very closely
matched by the components of the actual software as given in Appendix B.

IV. THE CENTRALIZED KEY MANAGEMENT

An environment for the key management must be created. The first
step is the creation of the actual database on the key management machine
(KMM). This step is accomplished by the DCL command procedure SETUP.COM.
This DCL command file creates the key management database (KEYMGR) and in
that database the pointer table (PTRTABLE), the key index table (KEYINDEX),
the period table (PRDTABLE), and the node name table (NODETABLE). The
next step is the loading of the NSA keys off the magnetic tape into the
database on the KMM. This loading is accomplished with the KEYLOAD.COM
command procedure. In addition, this process affixes the permanent pointer
to the newly loaded keys. It is this pointer that is exchanged among nodes
to indicate what key is being used to cipher-process a given message. This
affixing process is performed by the FORTRAN program INDEX. The key and
pointer pairs are then appended to the DBMS table KEYINDEX, which is the
master key table and contains all the keys. This same program, INDEX, sets
and adjusts the pointers in PTRTABLE. These pointers are described in
detail in Appendix A. With the completion of KEYLOAD.COM, all the NSA keys
are indexed and stored in the master key table awaiting distribution.

9

The key management scheme needs to have a record of all the partici-
pating nodes. This record is used to determine the distribution of keys
and how many keys are needed. The assumption has been made that communica-
tion requirements are equally likely among any pair of nodes so no attempt
has been made to weigh the node-specific key allocation in favor of the
high-traffic pairs. The DCL command file UPDATE.COM provides the operator
of the KMM with an updated data table NODETABLE. This table (see Appendix
A) includes the node management data items as well as the node identifier.
The node identifier used in the node table must be the same as the response
to the DCL command $ SHOW LOGICAL SYSNODE for each of the WBCN gateway
nodes. This identification is checked at a later step in the key distribu-
tion process.

The next consideration in the key management is the key period, which
is the length of time a given key is active. Key periods are traditionally
determined as a function of the relevance of the protected information,
the life expectancy of the protected message, the volume of messages, the
redundancy within the message, and the level of hostility of the environ-
ment. The WBCN application of DES is unique in that it is being used to
provide a need-to-know information confidentiality rather than information
protection. The protection is provided by the approved link encryption
processors used on all the communication circuits. As a result, the WCS
key period management requirements are less stringent. On the other hand,
the WBCN Security Committee decided against applying a single key, for
some period, to a l l the messages between two particular nodes. They con-
cluded that a better scheme would be to have a pool of keys per period to
be used between nodes. In this fashion, it would be very unlikely that
consecutive messages would be encrypted under the same key. The upshot of
all of this is the key management scheme sets the key period to be 1 month
and allows for adjusting the number of keys allocated to the key pool.
The default value is 20 keys per pool per period. This value is one of
the attributes i n the data table PTRTABLE. The last wrinkle in the con-
sideration of key periods is how many periods' worth of key would be dis-
tributed and stored on the participating nodes at any time. Again the
WBCN Security Committee settled on three periods at one time.

Most of the key period information is handled automatically by the
key management processes. However, because it depends on the internal
calendar of the KMM, it must be initialized. This initialization is accom-
plished with the DCL command procedure PERIOD.COM.

Having completed the above three steps, the KMM is prepared to create
the separate key sets for each node. This creation is accomplished with
the DCL procedure EXTRACT.COM. This process determines from the NODETABLE
entries which key sets must be created; determines the number of keys
needed for distribution [note that it requires (N2 - N)*NP*NK keys per
key distribution where N is the number of participating nodes, NP is the
number of periods, and NK is the number of keys allocated per period];
checks the number of keys needed against the number available; and builds
VMS* files of the distinct key sets identified by origination node, desti-
nation node, key pointer period, and key. This process also deletes from
the master key table KEYINDEX all the keys extracted for this distribution
and resets the pointer in the PTRTABLE to reflect the distribution. This

*Virtual Memory System (VMS) is the name of the operating system supplied
by Digital Equipment Corporation for its VAX line of computers.

10

deletion is a protection against having the master table compromised. At
the conclusion of EXTRACT.COM, all the distinct key sets are stored as VMS
files on the KMM.

The next step is the creation of the actual key distribution tapes to
be sent to each node. This creation is accomplished by the DCL procedure
DISTRIB.COM. This process actually writes the key set files on tape for
distribution. The key set files are identified by incorporating the node
name information in the file name. This DCL procedure captures the infor-
mation and prompts the operator to be very conscientious in identifying
the destination node name with the information written on the external
label affixed to the tape reel. It is essential that the correct key set
be sent to the correct node. Substantial attention is paid to helping the
operator through this critical action.

The DISTRIB.COM procedure performs its own garbage collection as it
writes the VMS files out to the tape volumes. However, as a precaution,
the current VMS key files are copied to a set of archive files. This pre-
caution is taken because if something goes wrong with the tape distribution
to one of the nodes, there would no way to recover the key set that should
have gone to it. The loss of key sets during distribution will function-
ally incapacitate the miskeyed nodes. A permutation of key sets will keep
the intended recipient from receiving his designated information although
a third party with the misdirected key set would be able to decipher and
recover the information.

The archived key sets remain on the KMM until the next subsequent key
distribution occurs with the invocation of EXTRACT.COM. This process
deletes any archived key sets before it prepares the current new key sets.

DISTRIB.COM is the last of the key distribution procedures that run
on the KMM. At the completion of DISTRIB.COM, all the key sets have been
written to tape and are ready to be distributed to the respective nodes.

In general, the key distribution processes, with two exceptions, are
asynchronous; that is, they can be run in any order. The first exception
is SETUP.COM. As was described above, this command procedure establishes
the KEYMGR. SETUP.COM must be run successfully once to set up the database
on the KMM. It is frequently the case that a machine and its accounts have
not been set up correctly for the creation of a database. As a result,
SETUP.COM may not run successfully the first time or the second or even
the third time it is tried. Partial execution of SETUP.COM may leave a
lot of unusable database structure in place so the first thing SETUP.COM
does is to issue a DESTROY KEYMGR command. This action does all the neces-
sary garbage removal prior to creating the database. The important point
is DESTROY KEYMGR will completely eliminate a perfectly functional data-
base as well as clean up a bad database. If SETUP.COM is run after the
database has been created and loaded with information, all the contents
will be gone. I strongly recommend that SETUP.COM be run successfully
once and then removed from the KMM to preclude the possibility of subse-
quent damage.

Clearly, keys must be loaded on the database before they can be dis-
tributed. However, the keyload process can be run any time key information
is available. It is not necessary to synchronize it with any of the other
processes.

The creation of key sets with EXTRACT.COM depends only on having
enough keys available. EXTRACT.COM checks for enough keys, issues an error

11

message if there are not enough keys in the master table, and then exits
with no further action. However, EXTRACT.COM will have deleted the archive
key files prior to the error message.

It does not make sense to run the DISTRIB.COM process without having
prepared the key files using EXTRACT.COM first. However, DISTRIB.COM
checks for key files and issues a warning message before it exits if none
are found.

All these individual functional processes have been incorporated into
a single, menu-driven executive procedure, ROOT.COM. This process incor-
porates menu-selected branches to all the described individual processes
with the exception that ROOT.COM cannot invoke SETUP.COM. ROOT.COM has
been designed to be the operator interface to the key management process
set.

The completion of the command procedure DISTRIB.COM on the KMM pre-
pares key set tables to be distributed to the WBCN nodes. It also is the
end of the activity of the KMM in the WCS.

It is self-guiding and highly dialogue oriented.

V. NODE-SPECIFIC KEY MANAGEMENT

The remaining two elements of WCS are the node-specific key management
and the cipher processes. The node-specific key management consists of
two command procedures: SETUP.COM and KEYLOAD.COM. SETUP.COM is the DCL
cormnand procedure that creates the INGRES key user database on the node
machine. Like the SETUP.COM procedure on the KMM, this should be run suc-
cessfully once and then removed from the system for the same reason.

After the database has been created, that is, SETUP.COM runs suc-
cessfully, the next step is the loading of the tape prepared on the KMM
and distributed to the node site. This loading is accomplished by the
KEYLOAD.COM process. Much like the KMM processes, KEYLOAD.COM is a self-
guided, dialogue-oriented procedure. All that is needed from the operator
is mounting of the distribution tape.

VI. THE CIPHER PROCESS

The last component of the WCS is the cipher process. The cipher
process designed for the WBCN is a DES based cipher-block-chaining imple-
mentation. The process is accessed by making a call to the subroutine
cbc-cipher (see listing in Appendix B). This subroutine provides the
interface to the VMS assembly language implementation of the DES algorithm
written by Rich Belles at Lawrence Livermore National Laboratory. This
software algorithm has been checked and verified against the National
Bureau of Standards publication DES Modes of Operation.

The interface is set up to encrypt or decrypt an integral number of
64-bit words. The arguments required by this subroutine are detailed in
the listing of the code (Appendix B).

There is a caution that must be observed by the users of this WCS.
The cipher processor anticipates the cipher text or cleartext to be inte-
gral numbers of 64-bit words, quad words. The last word in the message
stream must be padded out to the quad word boundary. The DES algorithm
receives the starting address of the text and the number of quad words.

12

The algorithm takes full quad words whether they are padded or not. It is
probably better for the WSP to do the padding rather than to let the
algorithm pluck the random bits that fill out the quad word.

VII. SUMMARY

The WBCN is an initial step in establishing a full functionality
digital packet-switched network for the DOE. This network is national in
scope and continental in dimension. One of the many problems encountered
in the implementation is providing a high level of assurance that the net-
work would maintain the confidentiality of two-party communications. To
that end, a number of alternative possibilities have been investigated.
This inquiry has led to the decision to develop an application level data
encryption service to be utilized by the developers of the WCP. This ser-
vice, the WBCN cryptographic service, consists of multiple elements that
provide both key management and cipher processing. The key management
elements incorporate many aspects of traditional data management and have
been developed using the INGRES DBMS.

Mechanisms have been incorporated into the key management elements to
provide for key information exchange between nodes without the necessity
of developing an elaborate session key, key-encrypting key, or super-key
protocol.

The cipher-processing element is based on a verified VMS assembly
language implementation of the DES algorithm.

The entire WBCN cipher services suite has been loaded on the key man-
agement machine and executed correctly. Key distribution from NSA has
been negotiated. The first distribution of keys has been accomplished and
the working keys have been loaded on the KMM.

REFERENCES

1. DECnet, DIGITAL Network Architecture (Phase IV), General Description,
Order flAA-Nl49A-TC (Digital Equipment Corporation, Maynard, MA).

2. Wendy B. Rauch-Hindin, "Upper-Level Network Protocols," Electronic
Design (March 3 , 1983), pp. 180-194.

3 . National Bureau of Standards, DES Modes of Operation, Federal Infor-
mation Processing Standard (FIPS) publication No. 81 (December 20,
1980).

13

14

APPENDIX A

DESCRIPTION OF THE DATA STRUCTURE

This appendix describes the data tables implemented under the INGRES
DBMS for the key management in the WBCN cipher services. The key manage-
ment is basically a data management problem. The INGRES DBMS has been
used to implement the data management part of the key management. INGRES
is a relational DBMS that uses flat files (tables) as its logical data
organizational structure. This appendix describes the tables used in the
various elements of the key management implementation. Some of the tables
are scratch tables as opposed to the permanent tables. Permanent tables
contain information that transcends any instance of specific key distribu-
tion. The scratch tables are distribution specific and are created and
destroyed during a single distribution cycle. The tables are identified
with which process creates them or destroys them and their contents.

Element: Centralized key management

Table: PTR TABLE

P/S: Permanent

Created: SETUP. COM

Table Description: This table contains the pointer into the KEYINDEX table
and the period tracking data.

Column Definition: ATTR = C10
PTR = I4

Row Entries &
Initial Values: ATTR

HIGHPTR
LOWPTR
PRDPTR
NBRKEYS
NBRPRDS
NEXTPRD

PTR
1
1
1

20
3
1

15

Entry description: HIGHPTR: The PTR value associated with this ATTR in-
dicates the next sequential index that is free t o be
assigned to a key that is received from NSA distribu-
tion. The associated PTR is initialized to 1 when the
table is created because no keys have been received,
indexed, and stored in the KEYINDEX TABLE.

LOWPTR: The PTR value associated with this ATTR indi-
cates the next sequential index of a key that is avail-
able for distribution to the nodes.

The difference: PTR (HIGHPTR) - PTR (LOWPTR) is the
total number of keys stored in the wastes table
KEYINDEX. This difference is checked against the
number of keys required for a particular distribution
in the program EXTRACT. EXE under the control of
EXTRACT.COM. If the difference is too small, a warn-
ing message is issued and the key set preparation is
stopped. If the difference is large enough, the key
set preparation runs to completion. A l l the required
keys are copied from the KEYINDEX table into VMS files.
Then PTR (LOWPTR) is recalculated to reflect the draw-
down from the master key table and all keys with in-
dexes less than the new PTR (LOWPTR) are deleted from
the master table.

PRDPTR: The PTR value associated with this ATTR indi-
cates which key period was last assigned.

NBRKEYS: The PTR value associated with this ATTR is
the number of keys each period to be associated with a
node to communicate with a specific other node. This
PTR value is set at 20. If the nodes are A and B with
A being the origination node, then A has 20 distinct
keys to use when originating messages t o B. Likewise,
B will have 20 different keys to use when originating
messages to A. In all, A and B share those 40 message
keys for that period.

NBRPRDS: The PTR value associated with this value of
ATTR is the number of periods' worth of keys per dis-
tribution. This value is initialized at 3 . Thus, as
a single distribution tape to A , there will be 60 dis-
tinct keys subdivided into three sets of 20 each for A
to use to originate messages to B.

NEXTPRD: The PTR value associated with this ATTR is
the number of the next assignable key period. For ex-
ample, after the first distribution, PTR(NEXTPRD) = 4 .

16

Element: Centralized key management

Table: KEY INDEX

PIS: Permanent

Created: SETUP. COM

Table Description: This is the master key table.

Column Definition: PTR = I4
KEY = C16

Row Entries: Each row is a key pointer pair, one for each NSA-
distributed key.

Entry Description: The pointer is the index associated with each new in-
coming key by the program INDEX.EXE under the control
of KEYLOAD.COM. For example, if 1253 keys had been
initially loaded and no keys distributed, PTR(L0WPTR)
= 1, PTR(H1GHPTR) = 1254. The keys stored in KEYINDEX
would have pointer values ranging from 1-1253. If
another 100 new keys were to be loaded, the first of
these keys would be assigned pointer value PTR(H1GHPTR)
I: 1254. The last key would be assigned value 1353 and
at the conclusion of the loading, PTR(H1GHPTR) = 1354.

17

Element: Centralized key distribution

Table: PRDTABLE

P/S : Permanent

Created : SETUP. COM

Table Description: This table keeps track of the key periods and the data
when the period expires.

Column Definition: PERIOD = I4
PERIOD-DATE = date

Row Entries: Each row is a period value and expiration date of the
period.

Entry Description: In order for each node to keep track of which keys to
use, the node must know which key period to reference.
I chose to distribute the period information rather
than hardwire it into the code. I did this because I
am not sure how the key period management may even-
tually mature. The way it is set, the global period
management can be adjusted through change to this one
table. Because the reference date associated with each
period is an absolute date rather than an increment
from a starting date, the table must be initialized at
the onset of the utilization of the WCS, This table
is accessed through the DCL command PERIOD.COM under
the control of ROOT.COM.

18

Element: Centralized key management

Table: NODETABLE

P/S: P e rmanen t

Created: SETUP. COM

Table Description: This table contains the WBCN node identification used
to identify the nodes with the distributed keysets.
In addition, the table includes the general demographic
information about node site location, configuration,
and contacts for the benefit of centralized WBCN
management.

Column Definition: NODE-NAME
S ITE-NAME
DECNET ADDR

MAILIADDR2
MA I L-ADDR3
MAIL ADDR4

NAME-SYSNGR
NAME-DCOM
FPH-SYSMGR
CPH-SYSMGR
FPH-SECMGR
CPH-SECMGR
FPH-DCOM
CPH-DCOM
CONFIG-INFO
LOCNET-INFO

MAIL GDR~

NAME~SY SNGR

= c20
= c20
= c20
= c20
= c20
= c20
= c20
= c20
= c20
= c20
= c12
= c12
= c12
= c12
= c12
= c12
= c200
= c200

Row Entries: Each row is the complete WBCN node identification entry
in the WCS key management database.

Entry Description: NODE-NAME: This entry stores the unique WBCN node
identifier for each node and is the identifier used to
prepare and distinguish the key sets. It is required
that the contents of this identifier be exactly the
same as those shown in response to the DCL command
$ SHOW LOGICAL SYSNODE on each WBCN node. I have used
this symbol to check for valid key distribution at the
separate nodes.

The remainder of the record attributes are site-
specific demographic information. This information is
not used directly in the WCS.

19

SITE-NAME: The common value of the facility housing/
using the WBCN gateway.

DECNET-ADDR: The DECNET node designation.

MAIL-ADDR(1-4):
able.

The mailing address--four lines avail-

NAME-SYSMGR: The name of the system manager.

NAME-SECMGR: The name of the WBCN node security
manager.

NAME-DCOM: The name of the digital communications
contact.

FPH ****: The FTS phone numbers for the named con-
tacts.

CPH-*A**: The commercial phone numbers for the named
contacts.

CONFIG-INFOR: Optional space to keep track of the
WBCN node machine configuration.

LOCNET-INFO: Description of the local network, if any,
connected to the WBCN node gateway machine.

20

Element: Centralized key distribution

Table: NODEPAIR

P/S: Scratch

Created : EXTRACT.COM

Table Description: This table is created during the key set extraction
phase. It amounts t o the cross product of the node
table column with itself followed by deletion of the
main diagonal. If one thinks of a table column as a
column vector V, the NODEPAIR is the listing of the
elements of the matrix

Observe that the result is a set of pairs of all pos-
sible communicating node pairs in the WBCN.

Column Definition: ORIG-NODE = C20
DEST-NODE = C20

Row Entries: Each row is an origination/destination node pair from
the WBCN.

Entry Description: Because the participation in the WBCN on the part of a
single node may be dynamic, some provision is needed
to account for changes and expansion in the WBCN par-
ticipation.

21

Element: Centralized key distribution

Table : INDEXTABLE

P/S: Scratch

Created : EXTRACT.EXE

Table Description: This table provides a temporary holding structure for
all the matched keys, nodes, and pointers prior to
creating the separate VMS files.

Column Definition: ORIG-NODE = C20
DEST-NODE = C29
JNDEX = I4
PERIOD = I4
KEY = C16

Row Entries: Each row is a key and key pointer associated with a
period and pair of WBCN nodes.

Entry Description: The entries in this table consist of all the keys and
pointers for the next key distribution cycle, paired
with their respective nodes. The next step in the
process is t o extract from this table the pairwise
distinct key sets.

22

Element:

Tab le :

P/S:

Table Descript-m:

Column Definition:

Row Entries:

Entry Description:

Centralized key distribution

KEYDUMP

Scratch

This is a temporary storage ta le for the distinct key
sets. The distinct sets are extracted from INDEXTABLE
and stored in KEYDUMP just prior to being written out
to VMS files.

The column definition is the same as those for
INDEXTABLE.

These are the same as for INDEXTABLE with the exception
that all the row entries are for a single origination
node.

These are the same as for INDEXTABLE.

23

Element: Site-specific key management

Table: KEYTABLE

P/S: Permanent

Created: SETUP. COM

Table Description: This is the node-specific key table.

Column Definition ORIG-NODE = C20
DEST-NODE = C20
KEYPTR = I4
PERIOD = I4
KEY = C16
COND = c3
NUSE = I4

Row Entries: Each row entry is a description of a key, its pointer,
which node it can be used with, and use information.

Entry Description: ORIG-NODE: The node arbitrarily designated the origin
node in the process of creating the NODEPAIR table.

DEST-NODE: The node arbitrarily designated the desti-
nation node in the process of creating the NODEPAIR
table. Notice that either ORIG NODE or DEST-NODE must
be the same as the local node identifier in order for
the key record to be included in the specific key dis-
tribution set.

KEYPTR: This is the key index assigned to the key by
the 1NDEX.EXE program and hence carried over from the
KEYINDEX table.

PERIOD: This is the number or designator of the period
for the key.

KEY: The key in plain-text ASCII code.

COND: One of the two data items used to track the
usage of the key.

NUSE: The other data item used to track the usage of
the key.

24

APPENDIX B

LISTINGS OF ALL THE SOFTWARE THAT CONSTITUTES THE WCS

The key management DCL command processes used to establish and
process the key distribution on the key management machine are

SETUP b COM
ROOT, COM
KEYLOAD, COM
UPDATE, COM
PERIOD, COM
EXTRACT, COM
DISTRIB, COM
ERROR b COM
LOGICALS , COM

25

This command file is used to set the basic underlying database
and file structure for the key management system. This process
should be run to completion only once. If it is run on the
active key management database all is lost.

There are only a few things that need to be done.
data base needs to be setup.

Primarily the

First setup the logical symbols for this process

@ud:[crypto.keymgr]logicals.com

Then visit with the user.

ws start
ws erase
ws bell
ws bell
ws "This process creates the database and constructs the permanent
ws "tables used by the key manager code to distribute keys to the

ws "This process should be run only once. If this process is run
ws "against an active key management environment,
ws "1 recommend that this process be removed form the system after

ws "intercept inquiry next that gives the user a chance to quit here"
ws "if needed. If you want to proceed enter 'READY', if you want
ws "stop enter 'EXIT', any other response will loop on the inquiry.
ws line
ws line

ws "WBCN gateway nodes to use with the DES encryption. II

all will be lost."

ws "it has been sucessfully run the first time. There is an 11

ques loop:

inquire command Please enter command (READY or EXIT)I1

-

If command .eqs. "EXIT" then goto exit point
If command .nes. "READY" then g o t o ques - loop

Otherwise continue

hushl
hush2
destroydb keymgr

hushl
hush2
createdb keymgr

Run the Ingres script that creates the tables -ptrtable-, and
-keyindex-. This script also initializes the values in -ptrtable-

hushl
hush2

ingres -s -d keymgr <setup.ing

ws line
ws line
ws bell
ws "The setup process has completed

$!I
$
$ 1 I s
$
$
$
$ exit - point:
SI ! 9 exit

27

$! !
$ 1 1
$!I
$! !
$! !
$! !
$! !
$! !
$ 1 1
$!I
$! I
$! I
$I!
$! !
$! !
$! !
$! !
$! !
$! !
$! !
$! !
$ I !
$! I
$! !
$! !
$! !
$! !
$! !
$!
$! !
$! !
$! !
$! !
$! I
$! !
$! !
$! !
$! !
$!I
$! !
$! !
$! !
$! !
$! !
$! !

This is the controlling command file the is used to run the
key management pieces of software.
consists of three separate components.

This key management software

KEYLOAD.COMm
EXTRACT.COMm
UPDATE.COM
DISTRIBUTE.COMm

KEYLOAD.COM is the command file that moves
the distribution tape into an INGRES table
redistribution to the various WBCN gateway

the key material from
for storage and eventual
nodes

EXTRACT.COM is the command file that runs the various processes
that creates the mutually unique key sets that are destined for
the various WBCN gateway nodes

UPDATE.COM is the command file that provides a means for the key
management to update the WBCN gateway node information

PERIOD.COM is the command file that provides a means for the key
management to update the key period table

DISTRIBUTE.COM is the command file that runs the processes for
actually creating the node key distribution tapes

There are a selection of subordinate command files used to support
the processing in ROOT.COM.

LOGICALS.COM is used to hold all the common logical definitions
that are invoked in the main commmand files.

SETUP.COM contains the initial setup processing needed to establish
the key management function. It should be run only once and then
removed from the system. It will completely destroy the key
management tables if run twice.

Is is not intended that the user need to interrupt this process,
however control t and y have not been turned off. The following
line will do that if it becomes necessary.

$ 1 ! ! ! set nocontrol=(t ,y)
$! !
$! !
$! !
$! !
$ @ud:[crypto.keymgr]logicals.com
$! !
$! !
$! !

The first part of the command file sets up the logical definitions

$! ! All of the temporary files and tables used in this and the subordinate
$! ! command files and processed have the extension .tmp. This makes it
$! !
28

easier to maintain the housekeeping as the processes run.

All of the Ingres script files have
utilized throughout the processing.

.ing extensions. These are

ws start
ws erase
ws bell
ws bell

ws "This is the supervisory process for the WBCN key management"
ws "key distribution and management code."
ws line
ws line.
ws "this code has four sections: 11

ws line
ws I'keyload -- this reads the NSA key distribution tape and
ws encorporates the contents into the key 11

ws If management tables I1

ws line
ws "update -- this section activates the database processes
ws I' that provide for updating the WBCN gateway node"
ws information I1

ws line
ws "period
ws I'

ws information
ws line
ws "extract -- this section extracts the pairwise unique sets
ws of keys to be sent to the various WBCN nodes
ws and creates the VMS files that hold these keys
ws line
ws "distribute -- this section actually writes the tapes to go"

ws line
ws "exit
ws line
pause
ws line
ws "These processes are appropriately done in sequence in the
ws "above described order. However they do not need to be run"
ws "immediately after each other. Two notes of caution: First"
ws "interrupting any of these processes with a control-c or a
ws "control-y will more than likely have unpredictable and
ws "unpleasant results and is therefore is not recommended.
ws "Second, this process is dimensioned to handle up to a
ws Itmillion keys on the NSA distribution tape.
ws 'Imore than that a t one time will have very predictable and

-- this section activates the database processes
that provide for updating the key period data

I1

ws to the specific WBCN gateway nodes 11

-- provides a controlled exit for the process f t

I1

Trying to load"

ws "unpleasant results. 11

ws line
ws line
ws "All the command responses used in the process must be in
ws Ituppercase. Please set the caps-lock on your keyboard. I1

pause
pause

29

get - command - loop:
Check to see if the error flag has been set. If so branch to exit
before clearing the screen

if error - cond .eqs. IrON" then goto exit - loop
Otherwise continue processing

ws start
ws erase

ws "Enter the command for the section of this key management "
ws "process that you desire to use: 11

ws line

ws line

ws line

ws line

ws line

ws If KEYLOAD --
ws If UPDATE --

ws It PERIOD --

ws (I EXTRACT --
ws (I DISTRIB --
ws
ws line
ws EXIT
ws line
ws line

-

process the NSA distribution tape II

update the gateway node information

update the key period information

prepare a new set of keys for distribution"

write the tapes for distrbution to the
WBCN nodes

provides a controlled exit

11

11

I t

inquire command -
"Enter command (KEYLOAD, UPDATE, PERIOD, EXTRACT, DISTRIB, EXIT)"

if command .eqs. "KEYLOAD" then goto keyload - loop

if command .eqs. "EXTRACT" then goto extract - loop
if command .eqs. YJPDATE" then goto update - loop

if command .eqs. "PERIOD" then goto period - loop

if command .eqs. "DISTRIB" then goto distrib - loop

if command .eqs. "EXIT" then goto exit - loop
Otherwise the entered is a bad command.
through the get - command - loop again

So notify the user and loop

ws bell
ws line
ws "The command you entered was not one of the choices, please If
ws "try again 1)

$ s
$ I !
SI !

pause

goto get - command - loop

keyload - loop:
This loop calls the keyload command file.
recycles through the get command - loop.
is in the called

Upon completion it
All of the progess information

.com process

@keyload.com
goto get - command - loop

extract loop:

This loop calls the extract command file. Upon completion it
recycles through the get - command-loop.
is in the calledg .com process.

-

All of the progress information

@extract.com
goto get - command - loop

update - loop:
This loop calls the update command file.
recycles through the get-command - loop.
is in the called .com process.

Upon completion it
All of the progress information

@update.com
goto get - command - loop
period - loop:
This loop calls the period command file.
recycles through the get-command - loop.
is in the called .com process.

Upon completion it
All of the progress information

@period.com
goto get - command - loop

distrib - loop:

This loop calls the distribution command file.
recycles through the get-command-loop. All of the progress information
is in the called .corn process.

Upon completion it

@distrib.com
goto get - command - loop

exit - loop:

This loop provides for and orderly exit from the root.com process
31

32

This command file runs the processes that unload the NSA
distribution tape and installs the keys in the appropriate
database tables

ws
ws

ws
ws
ws
ws
ws

start
erase

"This process unloads the NSA key distribution tape and moves
!!the keys into database tables for storage and further 11

"distribution to the WBCN nodes II

line
line

The first step in the process is t o move the keys from the tape t o
a VMS file. The tape is unloaded into the VMS file -keyfile.tmp-
But before that I need to make sure that no old temporary files
are lingering around

hush1
hush2
delete 'path'keyfile.tmp;*

Now start to setup for the tape handling. This loop gives the
user the opportunity to get the tape mounted and ready to copy

get - tape:
Set the default for the tape drive

tape - in = llmtaO:ll

Poll the user for the actual tape drive identification

ws bell

ws "This process needs the identifer ,of the tape drive you intend"
ws "to use. This identifer should look like (mtaO:, mfaO:, 11

ws "mtal: or such). This process defaults to mta0:. If that is
ws "the correct identifier then a CR is all that is needed for
ws "the response to the following question
ws line
ws line
inquire drive "Please enter the correct identifer'l

I!

if drive .nes. ltll then tape - in = drive

May want to put some error checking in here
33

$! !
$! !
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$! !
$
$! !
$! !
$! !
$! !
$I!
$
$
$
$
$! !
$
$
$
$! !
$
$
$
$! !
$! !
$
$! !
$
$
$
$
$
$
$
$
$
$
$! !
$! !
$! !
$! !
$! !
$! !
$! !
$! !

34

ws line
ws line
ws "The process is ready to copy the tape. Please load the tape"
ws "on the drive; be sure that the drive is online and ready
ws "to proceed I t

ws line
ws "This process has a loop built in here. If you do not enter
ws "-READY- in response to the following inquiry the process
ws "will loop to ask you for the tape identifier again, If you
ws "need additional time to do something this is a convenient It
ws "place to suspend this process. 11

ws line
ws line
inquire tape - load

if tape - load .nes. "READY"

!'When you are ready enter (READY) It

then goto get - tape

Qtherwise the tape is mounted on the correct drive and is ready to
go

ws line
ws line
ws "the copy has started"
pause

hushl
hush2
mount/for/den=1600 'tape - in'
hushl
hush2
copy 'tape - in' 'path'keyfile.tmp

The copy is complete so dismount the tape
dismount 'tape - in'

ws line
ws line
ws bell
ws "The copy is complete. Take the tape off of the drive"
ws line
ws "The process will now index the keys and store them
ws "in the Ingres table -keyindex-. This may take I t

ws "awhile to do , be patient 11

ws line
pause

Next this process indexes the keys in the data structure
and stores the keys in their resident table -keyindex-.

First get rid of any temporary files

hushl
hush2
delete 'path'keyindex.tmp;*

Run the indexing program

hushl
hush2
run/nodebug index

And clean up any temporary files on the way out.

hushl
hush2
delete 'path'keyindex.tmp;*
hushl
hush2
delete 'path'keyfile.tmp;*

The key loading has been completed. Control is transfered
back to the calling program

Signal to the user and return
ws bell
ws line
ws line
ws "The keyload process has finished"

exit

35

$ 1 I UPDAT'.COM
$!I
$! I This command file inables the user to run Ingres on the
$! !
$! !
$ I !
$ 1 I
$
$
$

node database to make any updates and corrections to the
WBCN node data before generating the key distribution tapes.

assign/user sys$command sys$input
qbf -s keymgr -f qbfnodemgr
exit

36

This command file inables the user to run ingres on the
key period table. The user must be sure that there are
enough specified key periods to cover the range of the
current key assignment process.
to add more key period information I recommend that the
user provides for many more that the necessary key periods.

assign/user sys$command sys$input
qbf -s keymgr prdtable
exit

Since it i s fairly easy

37

This command file runs the processes that determine the key indexes
on the sets of WBCN nodes that match with the indexes of the keys
to be distributed with this pass of the key management processes.
This process then extracts the correct number of keys from the
primary key table -keyindex- and prepares the pairwise unique key sets
for distribution to the participating nodes.

The bulk of the work is done in the program -extract-. The program
examines the key distribution requirements and appends to the
node-pair table an index that corresponds to the key that will be
assigned to the node pair. Then the program pairs the indexed node
pairs and the indexed keys to produce the pairwise unique VMS files
€ o r distribution to the WBCN nodes.

ws start
ws erase
ws line
ws line
ws "This process creates pairwise unique keysets for the wbcn nodes."
ws "You should have verified with the UPDATE process that all the 'I

ws "WBCN node information is current and complete. This process
ws "allows for a continue or exit choice just in the case you need
ws I f t o confirm the node information. If you want to continue enter "
WS "READY, any other response will end this process.

ws line
inquire command "Enter READY if you want to continue"

11

if command .nes. "READY" then goto exit - point
Otherwise continue with the extraction process.

First build a temporary table of the nodepairs with a call to ingres

hushl
hush2

ingres -s -d keymgr <nodepair.ing

Before starting the extract process delete any residual key files.
This is done out here but not in or after extract. This way the
VMS key distribution files are retained until a new set is written.
Also delete the .SAV files that are the backup residual files from
the previous key distribution. Both of these are not confirmed deletes.

hushl
hush2
delete 'path'*.key;*

hushl
hush2
delete 'path'*.prd;*

$
S! !

hushl
hush2
delete 'path'key*.sav;*

hushl
hush2
delete 'path'prd*.sav;*

Now run the program that creates the matching indexes of the nodepairs

ws line
ws line
ws "The process that creates and writes the VMS files starts now."
ws "It may take a while, be patient. !I

hushl
hush2
run/nodebug extract

Get rid of the extract scratch files

hushl
hush2
delete 'path'nodeindex.tmp;*

There is an error-flag that can be set by pairindex.
if there are not enough keys available for distribution as required
The flag is the process logical -error cond-. The flag is initialized
in LOGICALS.COM that is run first by R60T.COM. If the flag is set to
"ON" this process returns an error message and exits.

This flag is set

if error - cond .eqs. rrON" then goto exit - point

This process has completed.
This move is accomplished by running the distribute command file.

The VMS files are ready to move to tape.

ws line
ws line
ws "This process has completed.
ws "tape using the DISTRIB option.

The VMS files are ready to move to"
I1

exit - point:
exit

39

This process is invoked to actually write the prepared VMS
files onto tape for distribution to the WBCN gateway nodes.

The keys, pointers and all the other identification information
for each node is contained in a VMS file that is
identified by ud:[crypto.keymgr]NODEMNAME.key. There should only
be one version or issue of any of these key files since any
lingering versions are deleted during the"process that writes the
newest versions. This process pesters the user a bit about
getting all the needed tapes and other materials together before
actually starting the process. It may be appropriate to remove
some of this dialogue eventually.

ws start
ws erase
ws bell
ws bell

ws "You have started the process that writes the node-specific"
ws "key distribution tapes for the many WBCN gateway nodes.
ws line
ws line
ws "First the process determines how many tapes you need to "

ws "have on hand before you actually start the file movements."
ws "line I I

ws "In addition to the tapes you need to have the blank labels"
ws llto put on the tapes as they are written. It is fairly I'

ws "important to not mix up these tapes so I recommend that
ws "they be labeled as they are written. Don't forget you
ws "also need something to write with and you need a
ws "write-ring for the tapes. 11

I1

pause
pause

Now find out how many tapes are needed for this pass

count = 0
first loop:
firs tfile = f $search(' I * . key")
if firstfile .eqs. then goto next - one
count = count + 1
if count .ge. 50 then goto next - one
goto first - loop
next one : -

If count remains zero then something is very wrong. Likely
there are no VMS key files and the whole process is suspect.
Issue an error message and get out.

if count .nes. 0 then goto next two -

$! !
S! !
$! !
S! !
$! !

$! !
$! !
$! I
$! !
$! !
$! !
$! !

Otherwise there is an error. Set error-cond to on, issue
a message and exit

ws erase
ws start
ws bell
ws bell
ws bell
ws "There is a processing error. There are no VMS key files I'

ws "ready for distribution. This process now creates a
ws "gentle abort I t

I t

pause

error cond == "ON"

goto exit - point

-

next two :

To get here there is at least one VMS key file ready for writing
to tape.

-

prep - loop:

ws line
ws line
ws line
ws "You will need ",count," tapes for this process when you
ws "have the tapes, labels, a write-ring, and a marker ready
ws "to go enter READY. If you enter EXIT this process will I'
ws "gracefully exit without writing the tapes or altering 'I

ws "anything else. READY or EXIT)I

ws "this process will loop on this input.
If you enter enything but

If

pause
ws line
ws line

inquire command "Please enter command (READY or EXIT)"

If command .eqs. "EXITf1 then goto exit loop
if command .nes. ftREADYtf then goto prep - loop

To get here there are VMS key files to write to tape and the
user thinks he has the tapes and materials ready.

Now set up the tape write loop

41

$
SI !

out tape == "MTAO:"
dens == "1600"

This process needs the identifier for the tape drive used to
write these tapes . I've set it up to default to MTAO:.
I then poll the user for the correct drive identifer.
could be set to whatever the key distribution machine is setfor
then this section would not be necessary.

ws "This process needs the identifier of the tape drive you intend"
ws Ifto use. This identifer should look like (mtaO:, mfaO:,
ws %tal: or such)
inquire drive "Please enter the correct tape drive identifer"

if drive .nes.) I f 1 then out - tape = drive

write - loop:
Extract the node file name

This default

11

11

dum = f$search(fl*.KEY") - f$directory()
file = f$extract(f$locate(ll:fl,DUM) + l,f$length(DUM),DUM)
Test the contents of -file- if it is blank there are
no more key files left to write so quit

i f file .eqs. o f f then goto closeout

Next extract the nodename

node - name = f$extract(O,f$locate(".",f i le) ,f i le)

ws line
ws line
ws "The current key file is for ",node - name
pause

mount - loop:

ws line
ws line
inquire command "Mount the tape and enter READY when you are ready"

if command .nes. "READYtt then goto mount - loop

To get here the files are there, the tape is mounted and the
node has been identified to the user

The actual tape write is here

initialize 'out tape' 'node - name' /density='dens'
mount 'out tape' 'node - name'
copy ' node-name' .key ' out tape'/log
copy node-name' - .prd ' out-tape'/log -

$
S ! !

$
SI !

dismount/nounl 'out - tape'
This finishes the tape write for that node. Now copy the new key
to an old file and delete the current .KEY file. This saves the
old key sets if they are needed and still lets the DCL process use
the .KEY extensions to keep things sorted out.

copy 'node name'.key key'node name'.sav
copy 'node-name' - . prd prd'node-name' - sav

The delete is a confirm mode so if you have a problem you still
have a fallback option.

ws line
ws line
ws "You will now be asked if you want to delete the residual key
ws '!files. If the tape write has been done sucessfully then you ws "should delete these files. 11

ws line
ws line
delete/confirm 'node - name'.key;*
ws line
ws line
delete/confirm 'node - name'.prd;*

con t loop :
ws bell
ws bell
ws line
ws line
ws "The tape for ",node name," has been written. Take the"
ws "tape off of the tape arive and label it before you lose
ws "track of which tape was just written. Do this before you"
ws "start another tape write. II

pause

inquire command "Enter READY when you are ready t o proceed

if command .eqs "READY" then goto write-loop

Otherwise loop on this instruction

goto cont - loop
closeout :
ws line
ws line
ws "There are no remaining key files.
pause

The process in finished"

exit point:
exit-

43

$!I
$! !
$! !
$! !
$! !
$
$
$
$
$
$
$
$
$
$
$
$! !

$! !
$
$
$
$! !
$

This command file is called by the process -pairindex-. All
it does is notify the user of the shortage of available keys.

ws erase
ws start
ws bell
ws bell
ws "THERE ARE NOT ENOUGH KEYS AVAILABLE FOR THE D I S T R I B U T I O N t t
ws line
ws line
ws "The process will create a graceful abort at this point It

ws line
ws "Adjust the key allocation parameter or load additional
ws "keys before restarting this procedure It

pause
pause
pause

exit

44

T h i s .COM f i l e c o n t a i n s a l l t h e p r o c e s s l o g i c a l d e f i n i t i o n s
t h a t are used by t h e key management code.

PATH == "UD: [CRYPT0 . KEYMGR] 'I
WS == "WRITE SYS$OUTPUT"
BLANK LINE == "I'

BELL == " 1 '

ERASE == '1''

START == ' 1 1 '

LINE == " ' 1

-

hush1 == I t a s s ign /use r n l : sys$error l I
hush2 == t t a s s i g n / u s e r n l : sys$output"
pause == "wait 00:00:05tt
e r r o r cond == "OFF" -

45

46

The programs used by the DCL key management processes a r e

EXTRACT, QF
INDEX, QF

47

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C

, ##

C

C

C

C

C

C

C

C

C

C

C

C

&
C

This program performs a selection of services: It determines
the number of keys that can be distributed during this cycle,
It determines the range of indexes that are to be used this
cycle, It appends an index to the nodepairs entries in the
-nodepair- table. This set of indexed pairs is stored in a
temporary table -nodeindex- : it then maps the nodepairs to
the keys with this assigned index: finally it writes out the
node specific VMS key files.

This process creates a temporary file nodeindex.tmp as a working
buffer during excution.

This process creates the node specific VMS key files.
have the form

These files

program extract

setup and declarations

declare

character*33 outstringl, outstring2

character*l blank

character*20 fileidl

character*9 fileid2, fileid3

character*lO fhighptr, flowptr, fnbrkeys, fnextprd, fnbrprds

character*16 lockey(250000)

character*20 forig(250000), fdest(250000), fnode(1000)

character*25 max - date

in teger*4 highidx, lowidx, nnbrkeys, nxtprd, nperiods
integer*4

integer availkeys, nnodes, npairs, locidx, needkeys
integer key - index, period - index, strlen, need - period
integer m, i, j, k

lowindex, nextperiod, max - period

data fhighptr, flowptr, fnextprd, fnbrkeys, fnbrprds
/ 'highptr','lowptr','nextprd','nbrkeys','nbrprds'/

data fileidl / 'dual:[crypto.keymgr]' /
data fileid:! / '.key,text' /
data fileid3 / '.prd,text' /
data blank / ' /

C
C

48

C
C
C

C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

i ngres key mg r

Define the range variables for the Ingres references

range of pt is ptrtable
range of nt is nodetable
range of np is nodepair
range of ki is keyindex
range of pd is prdtable

Get some of the pointer and count information

retrieve (highidx = pt.ptr) where pt.attr = fhighptr
retrieve (lowidx = pt.ptr) where pt.attr = flowptr
retrieve (nxtprd = pt.ptr) where pt.attr = fnextprd
retrieve (nnbrkeys = pt.ptr) where pt.attr = fnbrkeys
retrieve (nperiods = pt.ptr) where pt.attr = fnbrprds

At this point the following has been retrieved into local
variables

highidx == This is the lowest unassigned index value for
the key table.
sequentially, this is the next assignable
index for the key list.

Since the keys are indexed

lowidx == This the lowest valued unassigned index available
in the key table. Any keys with lower index
have been deleted from the table. The
difference between highidx and lowidx is
the number of keys available for distribution.

nxtprd == This carries the number of the next assignable
key period

nnbrkeys == This carries the maximum number of keys that
can be distributed per pair of nodes per period.

nperiods == This carries the number of key periods assigned
during this key distribution pass

Calculate the number of keys available for the distribution

availkeys = highidx - lowidx
Determine the number of keys needed for this distribution
and also move the node identifiers into local storage

i = 1

retrieve (fnode(i) = nt.node name)

i = i + l
1

-

49

c
c
c

C
C
C

c
c
C
c
c
C

c

C

C
c
C
C

c

c
c
c

c
C
c
c

c

C
c

c
c
c
c
C
c
C

50

Adjust for the loop process

nnodes = i - 1
Then the total number of needed keys is given by

needkeys = nnodes * (nnodes - 1) * nperiods * nnbrkeys

Test the key numbers to see if there are enough keys available
for distribution. If not issue error messages and exit.
Otherwise continue processing

if (needkeys . gt. availkeys) then
call li b$spawn ($@error. com')
go to 100

end if

To get here there are enough keys in the indexed table. So
move all the nodepairs into temporary local storage and get the
exact count.

i = l
retrieve (forig(i) = np.orig - node,fdest(i)=np.dest - node)
i = i + l
1
Ajust for the last pass of the loop

npairs = i - 1

Now move the needed keys into local storage

i = l

retrieve (lockey(i) = ki.key) where ki.ptr >=
and ki.ptr <= lowidx +

i = i + l
1

lowidx
needkeys

Now setup the loop that runs through the generation of the
index pairing and the key assignment

The first assignable key has the index lowidx. First loop
through the count of the node pairs.
over the count of the periods for key distribution. The
inner-most loop advances over the count of how many keys

The next loop advances

&
C
C
C
50
C

belong to each period.

Open the VMS file that recieves the output of the indexing loop

open(unit=50,file='nodeindex.tmp',status='new~,carriagecontrol=~none~,
re~ordtype=~fixed',recl=76)

Put in the format for the write

format(a,a,ilO,ilO,a)

locidx = 1
C

do j = 1, npairs
C
C

C

C

C

C

&
C

do k = 1, nperiods

period - index = nxtprd + (k - 1)

do m = 1, nnbrkeys

key - index = lowidx + (locidx - 1)
write(50,50) forig(j),fdest(j),key - index,period - index,

lockey(1ocidx)

locidx = locidx + 1
C

end do
C

end do
C

end do

C
C
C
C
C

C

C

At the completion of these loops all of the key indexes have been
assigned

Close the VMS file

close(unit=50)

Now create the data table used f o r storing these indexed pairs
and copy the VMS file into it.

destroy indextable
create indextable(orig node=cZO,dest - node=c20, jndex=i4,per iodl i4 ,

keyd6)

copy indextable(orig node=c20, dest .node=c20, jndexZcl0, period-cl0, -
key-cl6)

from "dua1:[crypto.keymgr]nodeindex.tmp,text"

51

C
C
C
C
C
C
C
C

C
C
C
C
.C

C

C

C

C
C

C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

4 52

At this point all of the indexed node information is stored
in the Ingres table -indextable-. Now make sure that the period
table is up t o date and if not bring it up to date with the
default -one month- value.
output files.

Then cleanup and build the

retrieve (max period = max(pd.period))
retrieve (max-date = pd.period date)

where-pd. period = max - period
Calculate the needed period information then compare it with
the information in the table. If the table is short, add in
the needed additional values.

need - period = nxtprd + nperiods - 1
if (need - period .ge. max - period) then

do j = max - period + 1, need - period

append to prdtable (period = j,
period date = date(max date) +
concatTascii(j - max - period)," month"))

end do
end if

modify nodepair to truncated
destroy nodepair

delete ki where ki.ptr >= lowidx
and ki.ptr <= lowidx + needkeys

This leaves only the VMS file nodeindex.tmp to delete which
will be done in EXTRACT.COM.

The last part of this process is writing the VMS files for
each of the WBCN nodes

The way this works as follows. All the information for a single
node that is stored in the table -indextable- is retrieved into
a tempory dummy table. Then the contents of the table is written
out to a VMS file.
done again for the next node.

Then the dummy table is emptied and the loop

range of it is indextable

destroy keydump

C

C
C
C

C

C

C
C
C
C
C
C
C
C

C
C
C

C

C

C
C
C

C
C
C
C
C
C
C

C

C

C

create keydump (orig node~c20,dest - node=c20,keyptr=i4,period=i4,
keyzcl6)

do j = 1, nnodes

modify

append

All of

keydump to truncated

to keydump(orig node=it.orig node,dest node=it.dest node,
keypTr=it jndex,p%iod=it.period,key=it,Eey)

where it.orig node=fnode(j)
or it .des t-node=fnode(- j)

the location, key-indexes and period-pointers for this one
node are in the keydump- table. Now write out to the VMS file.

find out the length of the node identifier

strlen = index(fnode(j),blank) - 1
Build up the output file identifier

outstringl = fileidl//fnode(j)(l:strlen)//fileid2
outstring2 = fileidl//fnode(j)(l:strlen)//fileid3

copy keydump(orig node=cO,sp=dl,dest node=cO,sp=dl,
keyptr=cO, sp-dl, period=cO, sp=dl, key=cO,nl=dl)

into outstringl

into outstring2
copy prdtable(period=cO,sp=dl,period - date=cO,nl=dl)

Then do it all over again for the next node

end do

Finish up with the final bit of housekeeping

Adjust the pointers to reflect the actions of this process

lowindex = lowidx + needkeys
nextperiod = nxtprd + nperiods
replace pt(ptr = lowindex) where pt.attr = flowptr
replace pt(ptr = nextperiod) where pt.attr = fnextprd

modify keydump to truncated
destroy keydump
modify indextable to truncated
destroy indextable

53

C This is the transfer location for error-exits

100 continue
C

stop
end

54

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

this program appends an index to the key table. It reads the
keys form the temporary storage table -keytemp- that was created
earlier in the KEYLOAD.COM process. This program creates the
permament key table named -keyindex-. The program indexes the
keys with a consecutive index. The current maximum value of this
index is stored in the one-item table -keycount-.
value is used as the starting value for the indexing value. Hence
the key index hopefully will not need to be repeated.

This maximum

This program halls all of the keys from the temporary table -keytemp-
into local storage [in fkey]; fetches the current maximum index
value from the table -keycount-; then runs through a loop that
associates the index with the key. This associated pair is
written out to a temporary VMS file and then stuffef into the
final table keyindex. This last part is a lot faster than appending
each key/index pair to the table separately.

program index

Set up the various parts to use ingres

declare

The declared fortran variables used in the program are:

kindex == the incremented index that is associated with
each key. 1 used kindex because index is an
ingres reserved word

fkey == the buffer used to hold all of the keys from the
temporary table

highidx == the local value for the current stored maximum
key index

lowpidx == the local value f o r the current stored minimum
key index

fhighptr == the character string used to indicate the high
value attr

flowptr == the character string used to indicate the low
value at tr

endidx == the upper extent of the indexing loop

integer ios t
in t eger*4 kindex, highidx, lowidx, endidx
character*16 fkey
character*lO fhighptr, flowptr

55

C
data fhighptr, flowptr / 'highptr', 'lowptrl /

C
C
ingres keymgr

C
C
C
C

C
C
C
C

C
C
C
C

&

range of pt is ptrtable

Now get the current maximum index value

retrieve (highidx = pt.ptr) where pt.attr = fhighptr

Open the file for input to read the keys.

open (unit=70,file=1keyfile.tmp',status=101d~)

Open a file for output

open(unit=6O,file='keyinde~.tmp~,status=~new',
carriagec0ntro1=~n0ne',recordtype=~fixed~,recl=26)

C set format for the read

20 format (a)

C Set format for the write

10 format(il0,a)

C

C

C

C
C
C Initialize the counter and status flags for the loop

iost = 0

kindex = highidx

C

C

C

C
do while (iost .eq. 0)

read (70,20,iostat=iost) fkey

write (60,lO) kindex, fkey

kindex = kindex + 1

end do

C

C

C
30 continue

C now close the files
close(unit=70)
close(unit=60)

C
C Save the last value of the index
56

C
endidx = kindex

C
C

C
C
C
C
C

C
C
C
C
C
C
C
C
C
C

Having built the file, copy it into the table

copy keyindex(ptr=clO,key=c16) from
"dual:[crypto.keymgr]keyindex.tmp,text"

Now do the housekeeping and exit

Store the new maximum key pointer value in the keycount table

replace pt(ptr = endidx) where pt.attr = fhighptr

Get rid of the temporary key holding table

This process leaves all the newly indexed keys in the permanent
table -keyindex-. The only file that needs to be cleaned up is
keyindex.tmp that was used to move the keys around

stop
end

57

58

The key user DCL command processes used to establish and
process keys on the key utilization WBCN gateway nodes are

SETUP, COM
KEYLOAD,COM
LOGICALS, COM

59

This command file is used to set the basic underlying database
and file structure for the key management system. This process
should be run to completion only once. If it is run on the
active key management database all is lost.

There are only a few things that need to be done.
data base needs to be setup.

Primarily the

First setup the logical symbols for this process

@ud:[crypto.keymgr]logicals.com

Then visit with the user.

ws
ws
ws
ws
ws
ws
ws
ws
ws
ws
ws
ws
WS
ws
ws
ws

start
erase
bell
bell
"This process creates the database and constructs the permanent I'

'ltables used by the key manager code to distribute keys
"WBCN gateway nodes to use with the DES encryption.
"This process should be run only once.. If this process is run
"against an active key management environment,
"1 recommend that this process be removed form the system after
"it has been sucessfully run the first time. There is an
"intercept inquiry next that gives the user a chance to quit here"
"if needed. If you want to proceed enter 'READY', if you want
Itstop enter 'EXIT', any other response will loop on the inquiry.
line
line

to the
11

all will be lost."

I 1

ques - loop:
inquire command Please enter command (READY or EXIT) I 1

If command .eqs. "EXITff then goto exit point
If command .nes. "READY" then goto que: - loop

Otherwise continue

hushl
hush2
destroydb keymgr

hushl
hush2
createdb keymgr

Run the Ingres script that creates the tables -ptrtable-, and
-keyindex-. This script also initializes the values in -ptrtable-

hushl
hush2

60

ingres -s -d keyrngr <setup.ing

ws line
ws line
ws bell
ws I'The setup process has completed
exit poin t :

exit

$ 1 1
$
$ 1
$
$
$
$
$ -
$! I
$

61

$!
$! I
$! !
$! !
SI !

This command file runs the processes that unload the NSA
distribution tape and installs the keys in the appropriate
database tables

ws start
ws erase

ws "This process unloads the NSA key distribution tape and moves
ws "the keys into database tables for storage and further I t

ws "distribution to the WBCN nodes II

ws line
ws line

The first step in the process is to move the keys from the tape to
a VMS file. The tape is unloaded into the VMS file -keyfile.tmp-
But before that I need to make sure that no old temporary files
are lingering around

hush1
hush2
delete 'path'keyfile.tmp;*

Now start to setup for the tape handling. This loop gives the
user the opportunity to get the tape mounted and ready to copy

get tape:

Set the default for the tape drive

tape - in = "mta0:"

Poll the user for the actual tape drive identification

ws bell

ws "This process needs the identifer of the tape drive you intend"
ws "to use. This identifer should look like (mtaO:, mfaO:,
ws "mtal: or such). This process defaults to mta0:. If that is
ws "the correct identifier then a CR is a l l that is needed for
ws "the response to the following question
ws line
ws line
inquire drive "Please enter the correct identifer"

11

I t

if drive .nes. Iftl then tape in = drive -

May want to put some error checking in here

ws line
ws line
ws "The process is ready to copy the tape.
ws "on the drive; be sure that the drive is online and ready

ws line
ws "This process has a loop built in here. If you do not enter 'I

ws "-READY- in response to the following inquiry the process
ws "will loop to ask you for the tape identifier again. If you
ws "need additional time to do something this is a convenient
ws "place to suspend this process. 11

ws line
ws line
inquire tape - load
if tape - load .nes. "READY"

Please load the tape"

ws "to proceed 11

"When you are ready enter (READY)

then goto get - tape

Qtherwise the tape is mounted on the correct drive and is ready to
go

ws line
ws line
ws "the copy has started"
pause

hushl
hush2
mount/for/den=1600 'tape - in'
hushl
hush2
copy 'tape - in' 'path'keyfile.tmp

The copy is complete so dismount the tape
dismount 'tape in'

ws line
ws line
ws bell
ws "The copy is complete.
ws line
ws "The process will now index the keys and store them

Take the tape off of the drive"

ws "in the Ingres table -keyindex-. This may take 11

ws "awhile to do , be patient It

ws line
pause

Next this process indexes the keys in the data structure
and stores the keys in their resident table -keyindex-.

First get rid of any temporary files

63

hushl
hush2
delete 'path'keyindex.tmp;*

Run the indexing program

hushl
hush2
runlnodebug index

And clean up any temporary files on the way out.

hushl
hush2
delete 'path'keyindex.tmp;*
hushl
hush2
delete 'path'keyfile.trnp;*

The key loading has been completed. Control is transfered
back to the calling program

Signal t o the user and return
ws bell
ws line
ws line
ws "The keyload process has finished"

exit

64

This .COM file contains all the process logical definitions
that are used by the key management code.

PATH == "UD: [CRYPTO. KEYMGR] "
WS == "WRITE SYS$OUTPUT"
BLANK L I N E == ""
BELL c= 'Itt

ERASE PI I"'

START == '"1

L I N E == 'I1'

-

hush1 == "assign/user nl: sys$error"
hush2 == "assign/user nl: sys$outputfl
pause == "wai t 00 : 00 : 05"
error cond == -

65

66

Listings of the crypto-services programs, The programs actually
implementing the key utilization and the DES processing are

GETKEY, IF
FETCHKEY, QF
CBC CYPHER, FOR
X OR,FOR
PDES

67

C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C

C
C
C

C
C

C
C
C
C

68

This subroutine is one of the pair of the key service routines
prepared to support the WBCN DES encryption processing.

This subroutine returns a key and key pointer when it is called
with the origination node and destination node as the arguements.
The routine takes care of the rotation of the key through the
selection of available keys.

subroutine getkey (orig - site, dest - site, fkey - ptr, fkey, ferror)
declare

The declared fortran variables used in the routine are:

orig - site == the source gateway node

dest - site == the destination gateway node

fkey - ptr
f key == the key in character form

== the integer pointer that identifies the key

ferror == the error flag. Set to 10 if the
dest - site is not included in the key table

the destinition is reachable
f node == verification parameter used to confirm that

fperiod == the current key period

character*20 orig site, dest - site, fnode
character*16 fkey-
integer fkey ptr, iptr, ferror, detect
character*3 fcona, new, old
in t eger*4 f per iod

data new / 'new' /
data old / 'old' /

i ngres key user

Set up the table reference pointers

range of kt is keytable
range of nt is nodetable

C
C
C

C

C
C
C
C
C

C
C
C
C
C
C

C
C
C
C

C
C
C
C
C
10
C
C
C
C
C
C

C

C

C

range of pd is prdtable

First check to see if the destination keys are available to this node

ferror = 0
detect = 0

retrieve (fnode = nt.dest node) where nt.dest node = dest site
{
detect = detect + 1
1

- - -

If detect is still zero
that being the case set

then the dest site
the error flag and

is not reachable
ret run

if (detect .eq. 0) then
ferror = 10
exit
go to 20

end if

Otherwise continue toward getting the key

The next step is to get the current key period

retrieve (fperiod= max (pd.period
where "today" >= pd.period * date))

Put in a failsafe reference

if (fperiod .eq. 0) fperiod = 1

It turns out that since the old keys are not purged from the
key table the reference to first period keys will still be
valid.

continue

Do the initial retrieve on the key table. In addition check f o r
a completely used key set. If the key set is completely used reset
it and come back here to start again.

iptr = 0

retrieve (fkey ptr = kt.keyptr, fkey = kt.key)
where kt.orTg node = orig site
and kt.dest-node = dest-site -
and k t . cond-
and kt.period = fperiod

= new

{

iptr = iptr + 1

69

C
C
C
C
C
C

C

C

C

C

C
C
C

C
C
C
20
C

C

Check to see if any keys were returned. If so reset the use
pointer and return. Otherwise reset the table and start again

if(iptr .gt. 0) then

replace kt(cond = old) where kt.keyptr = fkey - ptr
exit
re turn

else

end if

replace kt(cond = new, nuse = kt.nuse t 1)
where kt.orig node = orig site
and kt .des t-node E des t-si te
and kt . period = f period

The table has been reset, now go get a key

go to 10

This is the branch point if a known error is detected

continue

return

end

70

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C
C

C
C
C

C

C
C
C
C
C
C

C
C

C
C

This subroutine returns the key that corresponds to a given pointer.
The idea is that when the WBCN initiates a connection the subroutine
getkey will be called to acquire the session key and key pointer.
Then as the connection is established the origination node sends the
key pointer to the destination node. the destination node makes a
call to this subroutine with the pointer as the arguement to
retrieve the key. This scheme requires the origination node to
make all the key requirements decisions before it originally
acquires the key and pointer. However with this scheme no discussion
is required between the origination and destination nodes over
the correct key identification.

subroutine fetchkey (fpointer, fkey, ferror)

declare

character*l6 f key
integer*4 f pointer
integer ferror, detect

ingres keymgr

range of pt is ptrtable

There is a modest error detection procedure built into this. If
this key fetch does not return a key then the flag ferror is set to 10.
Otherwise it is returned as 0.

ferror = 0
detect = 0

retrieve (fkey = pt.key) where pt.keyptr = fpointer
I
detect = detect t 1
1

if (detect .eq. 0) ferror = 10
C

re turn
C

end

71

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
t
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

72

This subroutine accesses the cypher block chaining mode of the
DES module. The routine is called with the cypher direction flag,
the process key, the initial vector, the input buffer, the output
buffer, the buffer length, and the returned output iv.

There are a few things that the user of this subroutine should
consider. First, the cypher processor expects to process an
integral number of 64 bit clear text words. This will usually
not be too much of a problem however it must be considered.
Be sure that the input buffer has been padded out to the full
64 bit boundary before calling the module.

. .
subroutine cbc - cypher(cflag, key, keyptr, buffin, buffot, len)

input

cflag == char*l == the cypher direction indicator: 'E'
for encrypt, I D ' for decrypt

key == real*8 == the clear-text cypher key 64 bits
initializes as a hexadecimal constant

buffin == real*8 == the input string configured as a string
of 64 bit words

len == intgr == the number of 64 bit words to be
processed

keyptr == intgr == the key pointer used to create an iv

output

buffot == real*8 == the cyphered result of applying the cflag
cypher direction with the variable key
and initial vector iv to the contents of
buff in

.

define and initialize the local paramaters

. .

C
C

C

C

C

character*l cf lag

real*8 buffin(len), buffot(len), key, iv, ivout

integer encrypt, decrypt, cbc - mode, len

in teger*4 keyp t r
C

data
data

encrypt, decrypt / 1 , 2 /
cbc - mode / 1 /

C
C
C
C
C
C
C
C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C
C

C
C
C
C

End of the definitions

Start the processing

Create the iv used for this mode of the DES processor

call x - or (key, keyptr, iv)

Decide which way to run the cypher processor

if (cflag .eq. ‘E‘) then

run the cypher in the encrypt mode

set the mode to cbc

call set - mode (cbc - mode)

set the process direction to encrypt

call set - dir (encrypt)

load the key and iv

call load - key (key,
stream the buffer through the processor and recover the iv

call pdes(buffin, buffot, len, ivout)

this ends the the encrypt pass now retrun

iv)

else if (cflag .eq. ‘D‘) then

run the cypher in the decrypt mode

set the mode to cbc
73

C

C
C
C

C
C
C

C
C
C

C
C
C
C

else
C
C there is a call error

C
C

any desirable error handling should /could be put here

re turn
C

call set - mode (cbc - mode)

set the process direction to decrypt

call set - dir (decrypt)

load the key and iv

call load - key (key,

stream the buffer through the processor and recover the iv

call pdes(buffin, buffot, len, ivout)

this ends the decrypt pass now retrun

iv)

C
end if

C
C

re turn
C
C

end
C
C

74

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C
C
C
C

C

C

subroutine x - or (inf, ins, iout)

the arguments for this subroutine are:

inf == input first == the first of the two 64 bit
quad words to be x or-ed -

ins == input second == the second of the two 64 bit

iout == output string == the result output

quad words t o be x or-ed
3

The arguements must be integers from here down since the intrinsic
function needs and returns integers

integer*4 inf(2), ins(2), iout(2)

They are dimensioned (2) to be able to hold all 64 bits

iout (1) = ieor (inf(l), ins(1))
iout (2) = ieor (inf(2), ins(2))

return

end

75

.TITLE PDES - PUBLIC DATA ENCRYPTION STANDARD
i
; AUTHOR: RICH BELLES

i
S - 5A:: .WORD ̂ XOOOO,~XOO28,^XOO28,^XlO28,^XOOOO,"xOOOO,~XlOOO,~XOO28

.WORD "X1OOO,~XOOOO,"XOO28,~XlOOO,^XlO28,^XlO28,^XOOOO,^XlOOO

.WORD ̂ XOO28,^X1OOO,^X1OOO,^xOOOO,^XlOOO,^XlO28,^XlO28,^XOO28

.WORD ̂ X1028, "X1000, ̂XOOoo, "X1028, ~X0028,~X0028,"X1028,^X0000

.WORD ~XOOOO,^X1O28,~XOOOO,"xOO28,^x1OOO,aXOO28,nXlO28,~XlOOO

.WORD ~XOO28,^X1OOO,~X1O28,~XOO28,^XlOOO,^XOOOO,~XOO28,~XlO28

.WORD ~X1O28,^XOOOO,~X1O28,^x1O28,nXOO28,^XOOOO,^XlOOO,~XlO28

.WORD ̂ XOOOO,"XOO28,nX1OOO,^XOOOO,nXOOOO,^x1OOO,^XOOZ8,~XlOOO
i
S - 6A:: .WORD ̂ XOAOO,~XOA01,~X0000,"XOAOl,~XOAOl,~XOOOO,~XOAOl,^XOOOl

.WORD "XOAOO,"X0001,aX0001,nXOAOO,^XOOOl,^XOAOO,~XOAOO,nXOOOO

.WORD "XOOOO,"X0001,~XOA00,^XOOOO,^X0001,^XOAOO,~XOOOO,nXOAOl

76

i
S - 7A::

i
S 8A:: -

9
S 1B:: -

i
S 2B:: -

,WORD ^XOAOl,^XOOOO,"X0001,"XOAOl,^XOOOO,^XOOOl,^XOAOl,^XOAOO
,WORD ^XOAOO,^XOOOO,"XOA01,^XOOOl,^XOAOl,^XOOOl,^XOOOO,^XOAOO
.WORD ^X0001,^XOAOO,~XOA00,^XOOOO,^XOAOO,^XOAOl,^XOOOl,^XOAOl
.WORD "X0001,"XOA01,"X0000,^XOAOl,^XOOOO,^XOOOO,~XOAOl,^XOOOl
.WORD ^XOOOO,^X0001,^XOA00,^XOOOO,^XOAOl,^XOAOO,^XOOOl,^XOAOO

.LONG ^X502000AO,"X0020000O,"XOOZOOOOO,^X5O2OOOAO

.LONG ^X50000000,^XOOOOOOAO,^X5OOOOOAO,^X00200OAO

.LONG ^XOOOOOOA0,^X502000A0,AX50200000,^XOOOOOOO0

.LONG ^X00200000,^X5000000O,^XOOOOOOAO,"X5OOOOOAO

.LONG ^X50200000,~X500000A0,nXOOZOOOA0,^XOOOOOOO0

.LONG "XOOOOOOOO,^X0020000O,~X5OZOOOAO,^X5OOOOOOO

.LONG "X500000AO,^XOOOOOOAO,^X00000000,*X5O2OOOOO

.LONG "X002000AO,^X5020000O,~X5OOOOOOO,^XOO2OOOAO

.LONG ^XOOOOOOOO,^X502000AO,"X5OOOOOAO,"X5OOOOOOO

.LONG ^X002000A0,^X50000000,^X50200000,^X00200000

.LONG ^X50000000,^X0020000O,~XOOOOOOAO,~X50200OAO

.LONG ^X502000AO,^XOOOOOOAO,^XOO2OOOOO,^XOOOOOOOO

.LONG ^X002000AO,^X5020000O,"X5OOOOOOO,^XOOOOOOAO

.LONG ^X5OOOOOAO,^X002000AO,~XOOOOOOAO,^X5OOOOOAO

.LONG "X5O2OOOOO,^XOOOOOOOO,"xOO2OOOOO,^XOO2OOOAO
,LONG ^XOOOOOOOO,^X500000AO,"X5O~OOOAO,"X5O2OOOOO

77

,
S - 3B:: .LONG ~X00002808,^X02802800,^X00000000,*X02800008

.LONG "X00002800,^X00000000,^X02802808,"X00002800

.LONG ~X02800008,~X00000008,^x00000008,^X02800000

.LONG ~X02802808,^X02800008,~X02800000,^X00002808

.LONG ^X00000000,^X00000008,^X02802800,^X00002800

.LONG ~X02802800,^X02800000,^X02800008,^X02802808

.LONG *X00002808,^X02802800,^X02800000,^X00002808

.LONG nXOOOOOO08,"X02802808,^XOOO02800,nXOOOOOOO0

.LONG ~X02802800,^X00000000,^X02800008,^X00002808

.LONG ^X02800000,^X02802800,^X00002800,^X00000000
,LONG ^X00002800,^X02800008,^x02802808,~X00002800
.LONG ~XOOOOOOO8,~XOOOO28OO,~XOOOOOOOO,^XO28OOOO8
.LONG ~X00002808,^X02800000,^X00000000,^X02802808
.LONG ~X00000008,^X02802808,^X02802800,^x00000008
.LONG ^X02800000,^X00002808,~X00002808,"x02800000
.LONG "X02802808,"X00000008,^X02800008,~X02802800

i
S - 4B:: .LONG "XOOOA0001,^XOOOA020l,~XOOOAO2Ol,^XOOOOO2OO

.LONG ~XOOOA0200,AX00000201,~XOOOOOOOl,^XOOOAOOOl

.LONG *X00000000,"X000A0000,^X000A0000,^X000A0201

.LONG nXOOOO0201,^XOOOOOOO0,"XOOOO0200,~XOOOOOOOl

.LONG ~X00000001,"XOOOA000O,^XOOOOOOOO,^XOOOAOOOl

.LONG ~X00000200,~X0000000O,~XOOOAOOOl,^XOOOAO200

.LONG ~X00000201,^X0000000l,^XOOOAO2OO,~XOOOOO2OO

.LONG ^XOOOAOOOO,^XOOOA020O,"XOOOAO2O1,"XOOOOO2Ol

.LONG "X00000200,"X00000001,~X000A0000,"X000A0201

.LONG "X00000201,^X0000000O,^XOOOOOOOO,^XOOOAOOOO

.LONG "XOOOA0200,^X0000020O,^XOOOOO2O1~^XOOOOOOOl

.LONG ~XOOOA0001,^XOOOA020l,^XOOOAO2Ol,^XOOOOO2OO
,LONG ^XOOOA0201,"X0000020l,~XOOOOOOOl,~XOOOAOOOO
.LONG aX00000001,^XOOOA0001,~XOOOA0200,~XOOOO0201
.LONG "XOOOA0001,^XOOOA0200,"XOOOOOOO0,nXOOOAOOOl
.LONG nX00000200,AX00000000,^XOOOAOOO0,^XOOOA0200

;
S - 5B:: .LONG ^X00001400,^X08001400,^X08000000,^X00001400

.LONG "X08000000,^XOOO01400,AXOOOOOOO0,"x08000000

.LONG ^X08001400,"X08000000,~X00001400,"X08001400

.LONG nXOOO01400,^X08000000,^X08001400,^xOOOOOOO0

.LONG ^XOOOOOOOO,^XO8OOOOOO,^XO8OOOOOO,^XOOOOOOOO

.LONG ~X00001400,~X08001400,"X08001400,"X00001400

.LONG ^XO8OOOOOO,^XOOOO14OO,^XOOOOOOOO,"xOOOOOOOO

.LONG ^X08001400,^X00000000,^X00000000,~X08001400

.LONG "X08000000,^XOOO01400,nXOOOO1400,nXOOOOOOO0

.LONG ~X00000000,^X08000000,^x00001400,*X08001400

.LONG ^X00001400,"X00000000,^X08000000,"X08001400

.LONG ^X08001400,^XOOO01400,^XOOOOOOO0,nX08000000

.LONG ^X08001400,^X08001400,~X00000000,"X08001400

.LONG ^XO8OOOOOO,^XOOOOOOOO,^xO8OOOOOO,"xOOOOOOOO

.LONG ^X08001400,"X00001400,^X00001400,"X08000000

.LONG ^X00000000,*X08000000,~X08001400,^X00001400
i
S - 6B:: .LONG "X00000050,~X00000000,~X00100000,*X00100050

.LONG ~XOOOOOOO0,^XOOOOO050,nXOO100050,nXOOOOOOO0

.LONG ^XO0100000,~XO0100050,~XOOOOOOO0,nXOOOOO050

.LONG ^XQOOOOO5O,^XOO1OOOOO,"xOOOOOOOO,"xOOlOOO5O

.LONG AXOOOOOOO0,~XOOOOO050,"XOO100050,AXOO100000

78

9
S - 7B::

i
S 8 B : : -

;
K EYS::
I-VEC: :
M-ODE: :
D-IR: :
I-ADD: :
O-ADD: :
L-EN: :
SREG :

.LONG *X00100000,*X00100050,*X00000050,^X00000050

.LONG ^XOOOOOO5O,^XOOOOOOOO,^XOOlOOO5O,^XOOlOOOOO
,LONG *XO0100050,^XO0100000,nXOO100000,"XOOOOOOO0
.LONG ^XOO1OOOOO,^XOOOOOO5O,^XOOOOOO5O,"xOOlOOOOO
.LONG *X00100050,"X00000000,^X001000050,^X00000050
.LONG ^XOOOOOOOO,^XOO1OOOOO,^XOOOOOOOO,^XOOlOOO5O
.LONG *XOOOOO050,*XO0100050,nXOO100000,^XOOOOOOO0
.LONG *XO0100050,"XO0100000,nXOOOOOOO0,^XOOOOO050
.LONG ^XOOOOOO5O,^XOO1OOOOO,^XOOOOOOOO,^XOOlOOO5O
.LONG *XO0100000,nXOOOOO050,"XOO1000509^XOOOOOOO0
.LONG ^XOO1OOOOO,^XOOOOOOOO,^XOOOOOO5O,*XOOlOOO5O

.LONG "XA0000000,*XA0000002,*X00008002,nX00000000
,LONG ~X00008000,*X00008002,~XA0008002,*XA0008000
.LONG *XA0008002,^XA0000000,nXOOOOOOO0,"XOOOOOO02
.LONG ^XOOOOOO02,nXOOOOOOO0,^XAOOOOO02,^XOOO08002
.LONG ^X00008000,"XA000800~,*XA0000002,^X00008000
.LONG ^X00000002,*XA00000009~XAOO08000,*XAOOOOO02
.LONG ^XA0000000,"X00008000,*X00008002,*XA0008002
.LONG "XA0008000,"X00000002,^XOOOOOOO09^XAOO08000
.LONG "XOOOOOOOO,*XA000800O,"XAOOOOOOO,*XOO008002
.LONG ^X00008002,nXA0000002,*XA0000002,nX00000002
.LONG ^XA0000002,nX00000000,^X00008000,^XAOOOOOO0
.LONG ^XA0008000,^X00008002,^XA000800~,^XA0008000
.LONG *X00008002,^X00000002,^XA0008002,"XA0000000
.LONG ~XA0008000,*X00000000,*X00000002,~XA0008002
.LONG nXOOOOOOO0,*XA0008002,*XAOOOOOO0,^X00008000
.LONG ^XOOOOOOO2,~XOOOO8OOO,~XOOOO8OOO,^xAOOOOOO2

.LONG "X00050100,^X00050000,"X04000000,^X04050100

.LONG ^XOOOOOOOO,"XOOO5O1OO,^XOOOOOl~O,~X~~OOOOOO

.LONG *X04000100,"X04000000,^X04050100,^X04050000

.LONG nX04050000,*X04050100,*XOO050000,~XOOOOO100

.LONG ^X04000000,"XOOOO0100,nXOO050000,AXOO050100

.LONG ^X04050000,"X04000100,"X04000100,"x04050000

.LONG "XOO050100,~XOOOOOOO0,nXOOOOOOO0,~X04000100

.LONG *X00000100,*X00050000,^X04050100,^x04000000

.LONG ^X04050100,*X04000000,^X04050000,~X00050000

.LONG nXOOOO0100,~X04000100,*XOO050000,"X04050100

.LONG ~XOO050000,~XOOOO0100,*XOOOOO100,AX04000000

.LONG ^X04000100,^X00000000,^X04000000,^X00050100

.LONG " X ~ ~ ~ ~ 0 0 0 0 , ^ X 0 4 0 5 0 1 ~ 0 , ^ x ~ 4 0 ~ ~ ~ ~ 0 , " x ~ ~ 0 0 0 1 ~ ~

.LONG * X O ~ O ~ O O O O , * X O O O 5 O O O O , ^ x O O O ~ ~ ~ ~ O , ^ x ~ ~ O O O O O O

.LONG ^X04050100,^X04050000,^X04050000,~X00050100

.LONG *XOO050100,~X04000100,"XOOOOOOO0,nX04050000

.BLKB 96
,BLKB 8
,BLKB 4
,BLKB 4
.BLKB 4
.BLKB 4
.BLKB 4
.BLKB 8

?

P
; B E G I N EXECUTABLE CODE

79

, . * *
ENTRY POINT LOAD KEY * * * * .

i
;

i
i
:
; CALLING SEQUENCE:

? -

i
i CALL LOAD - KEY (IKEY,IVEC)
?

; PURPOSE:
?

i LOAD KEY AND INITIAL VECTOR
?

; ARGUMENTS:

i IKEY : 64-BIT KEY FOR USE IN ENCIPHERING/DECIPHERING.
i
i IVEC : 64-BIT INITIAL VECTOR.

i
; OFFSETS FOR ARGUMENT LIST
i

.
?

,

IKEY=4
IVEC=8

9
.ENTRY LOAD - KEY "M<R2,R3,R4,R5,R6,R7,R8,R9,RlO,Rll>

i
; CALCULATE KEYS
9

MOVQ @IVEC(AP),I VEC
MOVQ @IKEY (AP) , Rz ; RO,R1 = IKEY
MOVL R2,Rl
MOVL R3,RO

MOVQ R12, SREG ; SAVE REGISTERS R12 & R13
i

i
CLRQ
CLRQ
CLRQ
CLRQ
CLRQ
CLRQ

BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS

;

loo$: BBC

80

R2
R4
R6
R8
R10
R12

#31,R0,100$
#12,R2,.+1
#6,R3,. t1
#16,R5,.+1
#24,R7,.+1
#24,R8,.+1
#31,R10,.+1
#28,R11,.+1
#30,R0,110$
#23,R2, ,t1
#15,R3,.+1
#17,R5, .t1

110$:

120$:

13O$:

140$:

150$:

160$:

170$:

BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

#4,R6, .+l
#14,R8,.+1

#16,Rll,.+l
#24,FP,.+l
#29,R0,120$
#19,R2,.+1
#10,R5,.+1
#13,R8,.+1
#15,R9, .+l
#17,R11,.+1
#4,R12,.+1
#28,R0,130$
#2,R2, .+l
#6,R5, .+l
#3,R7, .+l
#28,R9,.+1
#5,R10,,+1
#27,R12,.+1
#4,FP, .+l
#27,R0,140$
#31,R3,.+1
#3,R4, .tl
#28,R6,.+1
#5,R7, .+l
#27,R9, .+l
#4,R10,.+1
#O,R11,.+1
#26,RO, 150$
#4,R4, .+l
#O,R5, .+l
#18,R9,,+1
#7,R10,.+1
#16,R12,.+1
#17,FP,.+l
#25,R0,160$
#7,R4, .+l
#16,R6,.+1
#17,R7,.+1
#24,R9,.+1
#6,R11,.+1
#3,FP, .+l
#23,R0,170$
#22,R2,.+1
#10,R3,.+1
#25,R5,.+1

#ll,R8,.+1
#19,Rll,.el
#5,R12,.+1
#22 , RO, 180$
#31,R2, .+l
#25,R4,.+1
#29,R5,.+1
#12,R8,.+1
#10,R9,.+1
#25,Rll,.+l

#69R99 .+1

#11,R6,.tl

81

180$:

190$:

200s :

210$:

220$:

230$:

240$:

BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

#ll,R12,.+1
#21,R0,190$
#5,R3, .+l
#18,R5,.+1
#14,R6,.+1
#23,R8,.+1
#25,R10,.+1
#29,R11,.+1
#20,R0,200$
#6,R4, .+l
#31,R6,.+1
#10,R7,.+1
#3,R8, .+l
#14,R10,.+1
#23,FP,.+1
#19,R0,210$
#19,R3,.+1
#10,R4,.+1
#3,R5, .+l
#14,R7,.+1
#23,R10, .+l
#25,R12,.+1
#20,FP,.+1
#18,R0,220$
#20,R3,.+1
#23,R4, .+l
#25,R6,.+1
#20,R7,.+1
#13,R10,.+1
#5,R11,.+1
#l,FP, .+l
#17,R0,230$
#23,R3,.+1
#13,R4,.+1
#5,R5, .+l
#1,R7, .+l
#2,R8, .+l
#6,R10,.+1
#31,R12,.+1
#lO,FP,.+l
#15,R0,240$
#26,R2,.+1
#O,R3, .+l
#8,R5, .+l
#8,R6, .+l
#15,R8,.+1
#12,R9,.+1
#26,FP,.+1
#14,R0,250$
#9,R2, .+l
#1,R3, .+1
#20,R5,.+1
#30,R7,.+1
#22,R8, .+l
#O,R9, .+l
#8,Rll, .+l
#8,R12,.+1

82

250$: BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

260$: BBC

270$: BBC

280$: BBC

290$: BBC

300$: BBC

310$: BBC

#13,R0,260$
#21,R2,.+1
#26,R4,.+1
#29,R7,.+1
#31,R8,.+1
#1,R9, .+l
#20,R11,.+1
#30,FP,.+1
#12,R0,270$
#22,R3,.+1
#22,R4,.+1
#19,R6,.+1
#12,R7,.+1
#21,R9,.+1
#ll,RlO,.tl
#20,R12,.+1
#16,FP,.+1
#11,R0,280$
#26,R3,.+1
#12,R4,.+1
#21,R6,.+1
#11,R7,.+1
#20,R9,.+1
#16,R10,.+1
#2,FP, .+l
#10,R0,290$
#7,R2, .tl
#16,R4,.+1
#2,R7, .+l
#23,R9,.+1
#O,R10,.+1
#1,R11,.+1
#8,FP, .+l
#9, RO ,300$
#29,R3,.+1
#O,R4, .+l
#1,R5, .+l
#8,R7, .+l
#22,R10,.+1
#19,R12,.+1
#12,FP,.+1
#7,R0,310$
#16,R2,.+1
#9,R3, .+l
#27,R5,.+1
#27,R7,.+1
#3,R9, .+l
#21,R11,.+1
#2,R12,.+1
#6,R0,320$
#17,R2,.+1
#13,R3,.+1
#28,R7,.+1
#26,R8,.+1
#9,R9, .+l
#27,R11,.+1
#27,FP,.+1

83

320$:

330$:

340$:

350$:

360$:

370$:

380$:

390$:

84

BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC

#5, RO, 330$
#10,R2,.+1
#2,R3, .+l
#30,R5,.+1
#7,R6, .+l
#9,R8, .+l
#13,R9,.+1
#28,FP,.+1
#4, RO, 340$
#6,R2, .+l
#15,R4,.+1
#26,R6,.+1
#19,R7,.+1
#30,R9,.+1
#7,Rll,.+l
#9,FP, .+l
#3 ,RO, 350$
#28,R3,.+1
#19,R4,.+1
#30,R6,.+1
#7,R8, .+l
#9,R10,.+1
#4,R11,.+1
#2,R0,360$
#O,R2, .+l
#9,R4, .+l
#4,R5, .+1
#29,R9,.+1
#21,R10,.+1
#17,R12,.+1
#18,FP, .+l
1, RO ,3 70$
#16,R3,.+1
#21,R4,.+1
#17,R6,.+1
#18,R7,.+1
#22,R9,.+1
#15,R10,.+1
#26,R12,.+1
#19,FP,.+1
#31 ,R1,380$
#25,R2,.+1
#24,R4,.+1
#24,R5,.+1
#31,R7,.+1
#28,R8,.+1
#10,R11,.+1
#30,R1,390$
#29,R2,.+1
#4,R3, .+l
#14,R5,.+1
#6,R6, .+l
#16,R8,.+1
#24,R10,.+1
#24,R11,.+1
#31,FP,.+1
#29,R1,400$

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS

400$: BBC

410$: BBC

420$: BBC

430$: BBC

440$: BBC

450$: BBC

460$: BBC

#18,R2,.+1
#13,R5,.+1
#15,R6,.+1
#17,R8,.+1
#4,R9, .+l
#14,R11,.+1
#6,R12,.+1
#28,R1,410$
#ll,R2,,+1
#31,R4,.+1
#28,R5, .+l
#10,R8,.+1
#13,R11,.+1
#15,R12,.+1
#27,R1,420$
#3,R2, .+l
#5,R4, .+l
#27,R6,.+1
#4,R7, .+l
#O,R8, .t1
#18,R12,.+1
#7,FP, .+l
#26 , R1,430$
#25,R3,.+1
#18,R6,.+1
#7,R7, .+l
#16 ,R9, . +1
#17,R10,.+1
#24,R12,.+1
#25, R1 , 440$
#5,R2, .+l
#17,R4,.+1
#24,R6,.+1
#6,R8, ,+1
#3,R10,.+1
#28,R12, .+l
#5,FP, .+1
#23,R1,450$
#8,R2, ,+1
#11,R3,.+1
#11,R5,.+1
#19,R8,.+1
#5,R9, .+l
#18,Rll,.+l
#14,R12,.+1
#22, R1 , 460$
#20,R2,.+1
#12,R5,.+1
#10,R6,.+1
#25,R8,.+1
#11,R9,.+1
#11,R11,.+1
#21,R1,470$
#14,R3,.+1
#23,R5,.+1
#25,R7,.+1
#29,R8,.+1

85

470$:

480$:

490$:

500$:

510$:

520$:

530$:

BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

#12,Rll,.+l
#10,R12,.+1
#20 ,R1,480$
#15,R2,.+1
#19,R5,.+1
#5,R6, .+l
#18,R8,.+1
#14,R9,.+1
#23,Rll,.+l
#25,FP,.+1
#19,R1,490$
#21,R3, .+l
#14,R4,.+1
#23,R7,.+1
#25,R9,,tl
#20,R10,.+1
#13,FP,.+1
#18,R1,500$
#20,R4,,+1
#13,R7, .+l
#5,R8, .+l
#l,R10,.+1
#2,Rll,.+l
#6,FP, .+l
#17,R1,510$
#1,R2, .+l
#1,R4, .+l
#2,R5, .+l
#6,R7, .+l
#31,R9,.+1
#10,R10,,+1
#3,Rll,.+l
#14,FP,.+1
#15 ,R1,520$
#27,R2,.+1
#8,R3, .+l
#15,R5,.+1
#12,R6,.+1
#26,R10,.+1
#29,FP,.+l
#14, R1,530$
#30,R4,.+1
#22,R5,.+1
#O,R6,. t1
#8,R8, .+l
#8,R9, .+l
#15,R11,.+1
#12,R12,.+1
#13, R1,540$
#30,R2, .t1
#29,R4, .+l
#31,R5, .+l
#1,R6, .+1
#20,R8,.+1
#30,R10,.+1
#22,R11,.+1
#O,R12,.+1

86

540$:

550$:

560$:

570$:

580$:

590$:

600$:

610$:

BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS

#12, R1,550$
#12,R3,,+1
#26,R7,.+1
#29,R10,.+1
#31,Rll,.+l
#1,R12,.+1
#11,R1,560$
#30,R3,.+1
#11,R4,.+1
#20,R6,.+1
#16,R7,.+1
#2,R10,.+1
#23,R12,.+1
#O,FP, .+l
#10,R1,570$
#4,R2, .+l
#2,R4, .+1
#23,R6,.+l
#O,R7, .+l
#1,R8, .+l
#8,R10, .+l
#22,FP,.+1
#9, R1,580$
#17,R3,.+1
#8,R4, .+l
#22,R7,.+1
#19,R9,.+1
#12,R10,.+1
#21,R12,,+1
#ll,FP,.+l
#7, R1,590$
#24,R2,.+1
#27,R4,.+1
#3,R6, .+l
#21,R8,.+1
#2,R9, .+l
#30,Rll,.+l
#7,R12,.+1
#6,R1,600$
#14,R2,.+1
#28,R4,.+1
#26,R5,.+1
#9,R6, .+l
#27,R8,.+1
#27,R10,.+1
#3,R12,.+1
#5,Rl, 610$
#13,R2,.+1
#7,R3, .+l
#9,R5, .+l
#13,R6,.+1
#28,R10,.+1
#26,R11,.+1
#9,R12,.+1
#4,R1,620$
#28,R2,.+1
#3,R3, .+l

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

:SO$: M O W
ROTL
M O W
MOVL
MOVL

620$: BBC

630$: BBC

640$: BBC

M O W
ROTL
MOVW
MOVL
MOVL

M O W
ROTL
MOW
MOVL
MOVL

MOW
ROTL
MOVW
MOVL
MOVL

9

CLRQ
CLRQ
CLRQ

88

#21,R5,.+1
#2,R6, .+l
#30,R8,.+1
#7,R9, .+l
#9,Rll,.+l
#13,R12,.+1
#3,R1,630$
#27,R3,.+1
#7,R5, .+l
#9,R7, .+l
#4,R8, .+l
#29,R12,.+1
#21,FP,.+1
#2,R1,640$
#18,R3,.+1
#29,R6,.+1
#21,R7,.+1
#17,R9,.+1
#18,R10,.+1
#22,R12,.+1
#15,FP,.+l
#1, R1,650$
#24,R3,.+1
#18,R4,.+1
#22,R6,.+1
#15,R7,.+1
#26,R9,.+1
#19,R10,.+1
#30,R12,.+1

R3,K EYS+10
#16 ,E3 ,R3
R3,K EYS+O
R2 ,K-EYS+2
R4, K-EY - S+6

R6,K EYS+22
#16 ,E6, R6
R6,K EYS+12
R5, K-EYS+14
R7 ,K-EYS+18 -
R9,K EYS+34
#16, K9, R9
R9,K EYS+24
R8,K-EYS+26
RlO,K - EYS+30
R12,K EYS+46
#16, Ri2, R12
R12,K EYS+36
R11 , K-EY S+ 38
FP,K - EYS+42

R2
R4
R6

CLRQ
CLRQ
CLRQ

i
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS

660$: BBC

670$: BBC

680$: BBC

690$: BBC

700$: BBC

710$: BBC

R8
R10
R12

3 1 , RO ,6 60$
#21,R2,.+1
#2,R3, .+l
#30,R5, .+1
#7,R6, .+l
#9,R8, .+l
#13,R9,.+1
#30,FP,.+1
#30, RO ,670$
#27,R2,.+1
#27,R4, .+l
#3,R6, .+l
#21,R8,.+1
#2,R9, .+l
#30,R11,.+1
#29,FP,.+1
#29, RO, 680$
#28,R4,.+1
#26,R5,.+1
#9,R6, .+l
#27,R8,.+1
#27,R10,.+1
#12,R12,.+1
#28,R0,690$
#7,R2, .+l
#9,R4, .+l
#4,R5, ,+1
#29,R9,.+1
#21,R10,.+1
#17,R12,.+1
#8,FP, .+l
#27, RO, 700$
#4,R2, .+l
#29,R6,.+1
#21,R7,.+1
#17,R9,.+1
#18,R10,.+1
#22,R12,.+1
#22,FP,.+1
#26,R0,710$
#17,R3,.+1
#18,R4,. t1
#22,R6,.+1
#15,R7,.+1
#26,R9,.+1
#19,R10,.+1
#30,R12,.+1
#ll,FP,.+l
#25, RO, 720$
#26,R3,.+1
#19,R4,.+1
#30,R6,.+1
#7,R8, .+l

89

720$:

730$:

740$:

750$:

760$:

770$:

780$:

BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

#9,R10,.+1
#4,R11,.+1
#2,FP, .+l
#23,R0,730$
#10,R2,.+1
#13,R5,.+1
#15,R6,.+1
#17,R8,.+1
#4,R9, .+l
#14,Rll,.+l
#28,FP,.+1
#22, RO, 740$
#24,R2,.+1
#31,R4,.+1
#28,R5,.+1
#10,R8,.+1
#13,R11,.+1
#7,R12,.+1
#2 1 , RO ,7 50$
#14,R2,.+1
#6,R3, .+l
#16,R5,.+1
#24,R7,.+1
#24,R8,.+1
#31,R10,.+1
#28,Rll,.+l
#3,R12,.+1
#20,R0,760$
#O,R2, .+l
#18,R6,.+1
#7,R7, .+l
#16,R9,.+1
#17,R10,.+1
#24,R12,.+1
#18,FP,.+l
#19,R0,770$
#18,R3,.+1
#7,R4, .+1
#16,R6,.+1
#17,R7,.+1
#24,R9,.+1
#6,Rll,.tl
#15,FP,.+1
#18,R0,780$
#24,R3,.t1
#6,R5, .+l
#3,R7, .+l
#28,R9, .+l
#5,R10,.+1
#27,R12,.+1
#17, RO, 790$
#28,R3,.+1
#5,R4, .+l
#27,R6,.+1
#4,R7, .+l
#O,R8, .t1
#18,R12,.+1

90

790$:

800s :

810$:

820$:

830$:

840$:

850$:

860$:

BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS

#15,R0,800$
#18,R2,.+1
#14,R3,.+1
#23,R5,.+1
#25,R7,.+1
#29,R8, .+l
#12,R11,.+1
#6,R12,.+1
#14, RO ,8 10$
#11,R2,.+1
#19,R5,.+1
#5,R6, .+l
#18,R8,.+1
#14,R9,.+1
#23,R11,.+1
#15,R12,.+1
#13,R0,820$
#12,R2,.+1
#10,R3,.+1
#25,R$,.+1
#ll,R6,.+1
#ll,R8,.+1
#19,R11,.+1
#12,R0,830$
#25,R3,.+1
#20,R4,.+1
#13,R7,.+1
#5,R8, .+l
#1,R10,.+1
#2,R11,.+1
#11,R0,840$
#13,R4,.+1
#5,R5, .+l
#1,R7, .+l
#2,R8, .+l
#6,R10,.+1
#31 ,R12,. +2
#3,FP, .+l
#10,R0,850$
#2,R2, .+1
#6,R4, .+1
#31,R6,,+1
#10,R7,.+1
#3,R8, .+l
#14,R10,.+1
#4,FP, .+l
#9, RO, 860$
#3,R2, ,+l
#14,R4,.+1
#23,R7,.+1
#25,R9,.+1
#20,R10,.+1
#7,FP, ,+1
#7, RO, 870$
#29,R4,.+1
#31,R5,.+1
#1,R6, .+l

91

870$:

880$:

890$:

900$:

910$:

920$:

930$:

92

BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

#20,R8,.+1
#30,R10,.+1
#22,R11,.+1
#10,R12, .+l
#6,R0,880$
#15,R2,.+1
#12,R3,.+1
#26,R7,.+1
#29,R10,.+1
#31,Rll,.+l
#25,FP,.+1
#5, RO ,890$
#22,R2,.+1
#O,R3, .+l
#8,R5, .+l
#8,R6, .+l
#15,R8,.+1
#12,R9,.+1
#5,R12,.+1
#4,R0,900$
#2,R4, .+l
#23,R6,.+1
#O,R7, .+l
#1,R8, .+l
#8,R10,.+1
#6,FP, .+1
#3,R0,910$
#23,R3,.+1
#O,R4, .+1
#1,R5, .+l
#8,R7, .+l
#22,R10,.+1
#19,R12,.+1
#lO,FP,.+l
#2 ,RO, 920$
#22,R4,.+1
#19,R6,.+1
#12,R7,.+1
#21,R9,.+1
#ll,R10,.+1
#20,R12,.+1
#23,FP,.+1
1, RO ,930$
#21,R3,.+1
#ll,R4,.+1
#20,R6,.+1
#16,R7,.+1
#2,R10,.+1
#23,R12,.+1
#13,FP,.+1
#31 ,R1,940$
#30,R2,.+1
#7,R3, .+l
#9,R5, .+l
#13,R6,.+1
#28,R10,.+1
#26,Rll,.+l

940$:

950$:

960$:

970$:

980$:

990$:

BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

1000$: BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

#O,R12, .+1
#30,R1,950$
#3,R3, .+1
#21,R5,.+1
#2,R6, .+l
#30,R8,.+1
#7,R9, .+l
#9,R11,.+1
#l,R12,,+1
#29,R1,960$
#26,R2,.+1
#9,R3, .+l
#27,R5,,+1
#27,R7,.+1
#3,R9, .+l
#21,Rll,.+l
#26,FP,.+1
#28,R1,970$
#9,R2, .+1
#13,R3,.+1
#28,R7,.+1
#26,R8,.+1
#9,R9, .+l
#27,R11,.+1
#8,R12, .+l
#27,R1,980$
#29,R3,.+1
#21,R4,.+1
#17,R6,.+1
#18,R7,.+1
#22,R9, .+l
#15,R10,.+1
#26,R12,.+1
#12,FP,.+1
#26,R1,990$
#22,R3,.+1
#15,R4,.+1
#26,R6,.+1
#19,R7,.+1
#30,R9,.+1
#7,R11,.+1
#16,FP,.+1
#25 ,R1,1000$
#30,R3,.+1
#7,RS, .+l
#9,R7, .+l
#4,R8, .+1
#29,R12,.+1
#O,FP, .+l
#23, Rl ,1010$
#13,R2,.+1
#15,R3,.+1
#17,R5,.+1
#4,R6, .+l
#14,R8,.+1
#6,R9, .+1
#16,Rll, .+1

93

1010$:

1020$:

1030s :

1040$:

1050$:

1060$:

1070$:

94

BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBC
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

#9,R12,.+1
#22,R1,1020$
#28,R2,.+1
#10,R5,.+1
#13,R8,.+1
#15,R9,.+1
#17 ,R11, . +1
#13,R12,.+1
#21,R1,1030$
#16,R2,.+1
#24,R4,.+1
#24,R5,.+1
#31,R7,.+1
#28,R8,.+1
#10,Rll,.+l
#2,R12,.+1
#20,R1,1040$
#17,R2,.+1
#4,R3, .+l
#14,R5,.+1
#6,R6, .+l
#16,R8,.+1
#24,R10,.+1
#24,R11,.+1
#27,FP,.+1
#19 ,R1,1050$
#16,R3,.+1
#17,R4,.+1
#24,R6,.+1
#6,R8, .+l
#3,R10,.+1
#28,R12,.+1
#19,FP,.+1
#18,R1,1060$
#6,R2, .+l
#3,R4, .+l
#28,R6,.+1
#5,R7, .+l
#27,R9,.+1
#4,R10,.+1
#O,R11,.+1
#9,FP, .+l
#17,R1,1070$
#27,R3,.+1
#4,R4, .+l
#O,R5, .+1
#18,R9,.+1
#7,R10,.+1
#16,R12,.+1
#21,FP,.+1
#15,R1,1080$
#23,R2,.+1
#25,R4,.+1
#29,R5,.+1
#12,R8,.+1
#10,R9,.+1
#25,R11,.+1

BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

1080$: BBC

1090$: BBC

1100$: BBC

1110$: BBC

1120$: BBC

1130$: BBC

1140$: BBC

#24,FP,.+1
#14,R1,1090$
#19,R2,.+1
#5,R3, .+l
#18,R5,.+1
#14,R6,.+1
#23,R8,.+1
#25,R10,.+1
#29,R11,.+1
#4,R12,.+1
#13,R1,1100$
#25,R2,.+1
#11,R3,.+1
#ll,R5,.+1
#19,R8,.+1
#5,R9, .+l
#18,R11,,+1
#12,R1,1110$
#29,R2,.+1
#12,R5,.+1
#10,R6,.+1
#25,R8,.+1
#11 ,R9,. +1
#11,R11,.+1
#31,FP,.+1
#11,R1,1120$
#5,R2, .+l
#1,R4, .+l
#2,R5, .+l
#6,R7, .+l
#31,R9,.+1
#10,R10,.+1
#3,Rll,.+l
#5,FP, .+l
#10,R1,1130$
#31,R3,.+1
#10,R4,.+1
#3,R5, .+l
#14,R7,.+1
#23,R10,.+1
#25,R12,.+1
#9,R1,1140$
#23,R4,.+1
#25,R6, .+l
#20,R7,.+1
#13,R10,.+1
#5,R11,.+1
#17,FP,.+1
#7,R1,1150$
#31,R2,.+1
#1,R3, .+l
#20,R5,.+1
#30,R7,.+1
#22,R8,.+1
#O,R9, .+1
#8,R11,.+1
#11,R12,.+1

95

1150$: BBC
BBSS
RBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

BBSS
BBSS
BBSS
BBSS
BBSS
BBSS
BBSS

i
1210$: MOVW

ROTL
MOVW
MOVL
MOVL

M O W
ROTL
M O W
MOVL
MOVL

1160$: BBC

1170$: BBC

1180$: BBC

1190$: BBC

1200$: BBC

i

96

#6,R1,1160$
#26,R4,.+1
#29,R7,.+1
#31,R8,.+1
#1,R9, .+l
#20,R11,.+1
#5, R1,1170$
#8,R2, .+1
#8,R3, .+l
#15,R5,.+1
#12,R6,.+1
#26,R10,.+1
#14,R12,.+1
#4,R1,1180$
#20,R2,.+1
#30,R4,.+1
#22,R5,.+1
#O,R6, .+l
#8,R8, .+1
#8,R9, .+l
#15,Rll,.+l
#3,R1,1190$
#1,R2, .+l
#8,R4, .+l
#22,R7,.+1
#19,R9,.+1
#12,R10,.+1
#21,R12,.+1
#14,FP,.+1
#2, R1,1200$
#19,R3,.+1
#12,R4,.+1
#21,R6,.+1
#11,R7,.+1
#20,R9,.+1
#16,R10,.+1
#20 ; FP
#20, R3
#16,R4

#23,R9
#O, R10

#1,R1,

#2,R7,

. +1
2 10$. +1 . +1
+1 . +1 . +1

#1 ;R11, . +1
#l,FP, .+l

R3,K EYS+58
#16, fi3, R3
R3,K EYS+48
R2 ,K-EYS+SO
R4, K-EY - S+54

R6,K EYS+70
#16, E6, R6
R6,K EYS+GO
R5 ,K-EYS+62
R7, K-EYS+66 -

i
M O W R9,K EYS+82
ROTL #16,W9,R9
M O W R9 ,K EYS+72
MOVL R8 ,K-EYS+74
MOVL R10,K - EYS+78
M O W R12,K EYS+94
ROTL #16,R12,R12
M O W R12,K EYS+84
MOVL R11 ,KFEYS+86
MOVL FP,K - EYS+90
MOVQ SREG ? R12 ; RESTORE REGISTERS R12 & R13

RET

i

i

?
; .
; * *

ENTRY POINT SET MODE * * i
i * * . ;
i
; CALLING SEQUENCE:

i
i
; PURPOSE:
;
i SET MODE OF ENCRYPTION TO CBC OR ECB.
;
; ARGUMENTS:
i
; MODE : MODE FLAG:
;
i 1 = CYPHER BLOCK CHAINING MODE
; 2 = ELECTRONIC CODE BOOK MODE

-

?

CALL SET - MODE (MODE)

I
; OFFSETS FOR ARGUMENT LIST
i

i
MODE=4

.ENTRY SET - MODE,O

MOVL @MODE(AP),M - ODE
RET

9

;
i
?

?

. * *
ENTRY POINT SET DIR * * i

; * * .
i
; CALLING SEQUENCE:

-

?

i

97

7

i

i
i
i
i

i

i
i
i
i
;
i

i

i

7

7

I

i
i
i
;

i
i
i
i

i
i
;
i
i
i

i
i
i

i
i
i
i
i
i
i

I

7

7

I

i

i

98

CALL SET DIR (DIR) -
PURPOSE :

SET DIRECTION TO ENCRYPT OR DECRYPT.

ARGUMENTS :

DIR : DIRECTION FLAG:

1 = SET DIRECTION
2 = SET DIRECTION

TO ENCRYPTION.
TO DECRYPTION.

OFFSETS FOR ARGUMENT LIST

DIR=4

.ENTRY SET - DIR,O
MOVL @DIR(AP),D - IR
RET

. * * * ENTRY POINT PDES * * * .
CALLING SEQUENCE:

CALL PDES (INSTR,OUTSTR,LEN,IVEC)

PURPOSE :

PERFORM NBS ENCRYPTION/DECRYPTION OF INPUT STRING.

ARGUMENTS :

INSTR :

OUTSTR :=

LEN

IVEC .- ._

INPUT STRING.

OUTPUT STRING.

LENGTH OF STRING IN 64-BIT QUADWORDS.

FINAL VALUE OF VECTOR

OFFSETS FOR ARGUMENT LIST

INSTR=4
OUTSTR=8
LEN=12
IVEC=16

.ENTRY PDES "M<R2,R3,R4,R5,R6,R7,R8,R9,R101Rll>

i
MOVL INSTR(AP),I ADD
MOVL OUTSTR(AP) ,8 ADD
MOVL @LEN(AP) ,L ER

I
; MAIN LOOP OVER QUADWORDS
;
LOOPA:

i
; CHECK
?

;

2100$:

i
; APPLY
;

;

MOVQ @I ADD,R2
MOVL D TR,R11

FOR CYPHER BLOCK CHAINING

-

BBC #O,M ODE,2100$
BBC #Of RT1,2100$
XORL2 I VEC,R2
XORL2 I-VEC+4, - R3

MOVL R2,Rl
MOVL R3,RO

INITIAL PERMUTATIONS IP AND E.

CLRQ
CLRQ

BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC

R2
R4

#OO,RO, .+9
#06,R2,.+1
#04,R2,.+1
#01,R0,.+9
#06,R4,.+1
#04,R4,.+1
#02,R0,.+9
#18,R2,.+1
#16,R2,.+1
#03,R0,.+9
#18,R4,.+1
#16,R4,.+1
#04,R0,.+9
#28,R2,.+1
#30,R2,.+1
#05,R0,.+9
#28,R4,.+1
#30,R4,.+1
#06,R0,.+9
#08,R3,.+1
#10,R3,.+1
#07,RO, .t9
#08,R5, .+l
#10,R5,.+1
#08,R0,.+5
#03,R2, .+l
#09,R0,.+5
#03,R4,.+1
#10,R0,.+5
#15,R2,.+1
#11,R0,.+5

; R0,RI = INPT
; R11 = DIRECTION

; CBC ENCRYPTION

; R2,R3 WILL CONTAIN E(IP(R))
; R4,R5 WILL CONTAIN E(IP(L))

99

BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS

#15,R4,.+1
#12,R0,.+5
#27,R2,.+1
#13,R0,.+5
#27,R4,.+1
#14,RO, .+5
#07,R3,.+1
#15,R0,.+5
#07,R5,.+1
#16,R0,.+5
#02,R2, .+l
#17,R0,.+5
#02,R4,.+1
#18,R0,.+5
#14,R2,.+1
#19,R0,.+5
#14,R4,.+1
#20,R0,.+5
#26,R2,.+1
#21,R0,.+5
#26,R4,.+1
#22,R0,.+5
#06,R3,.+1
#23,R0,.+5
#06,R5,.+1
#24,R0,.+9
#15,R3,.+1
#01,R2,.+1
#25,R0,.+9
#15,R5,.+1
#01,R4,.+1
#26,R0,.+9
#13,R2,.+1
#11,R2,.+1
#27,R0,.+9
#13,R4,.+1
#11,R4,.+1
#28,R0,.+9
#25,R2,.+1
#23,R2,.+1
#29,R0,.+9
#25,R4,.+1
#23,R4,.+1
#30,R0,.+9
#05,R3,.+1
#03,R3,.+1
#31,R0,.+9
#05,R5,.+1
#03,R5,.+1
#00,R1,.+9
#12,R2,.+1
#10,R2,. +1
#01,R1,.+9
#12,R4,.+1
#10,R4,.+1
#02,R1,.+9
#24,R2,.+1

100

BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS

#22,R2, .+l
#03,R1,.+9
#24,R4,.+1
#22,R4, .+1
#04,R1,.+9
#04,R3, .+l
#02,R3, .+l
#05,R1,.+9
#04,R5,.+1
#02 ,R5,. +1
#06,R1,.+9
#14,R3,.+1
#OO,R2, .t1
#07,R1,.+9
#14,R5,.+1
#00,R4,.+1
#08,R1,.+5
#09,R2,.+1
#09,R1, .+5
#09,R4, .+l
#10,R1,.+5
#21,R2, .+l
#11,R1,.+5
#21,R4,.+1
#12,R1,.+5
#01,R3,.+1
#13,R1, .+5
#01,R5,.+1
#14,R1, ,+5
#13,R3,.+1
#15,R1, ,+5
#13,R5,.+1
#16 ,R1, . +5
#08,R2, .+l
#17,R1,.+5
#08,R4,.+1
#18,R1,.+5
#20,R2,.+1
#19,Rl,.+5
#20,R4,.+1
#20,R1,.+5
#00,R3,.+1
#21,R1,.+5
#00,R5,.+1
#22,R1,.+5
#12,R3,.+1
#23,R1,.+5
#12,R5,.+1
#24,R1,. +9
#07,R2,.+1
#05,R2, .t1
#25,R1,.+9
#07,R4,.+1
#05,R4,.+1
#26 ,R1, . t9
#19,R2,.+1
#17,R2,.+1

101

BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS
BBC
BBSS
BBSS

#27,R1,.+9
#19,R4,.+1
#17,R4,.+1
#28,R1,.+9
#29,R2,.+1
#31,R2,.+1
#29,R1,.+9
#29,R4,.+1
#31,R4,.+1
#30,R1,.+9
#09,R3,.+1
#ll,R3,.+1
#31,R1,.+9
#09,R5,.+1
#ll,R5,.+1

;
; ASSUME ENCRYPTION
i

CLRL R9
MOVL #6,R10
BB S #O,R11,2000$; ENCRYPTION

MOVL #90,R9
MNEGL R10, R10 ; DECRYPTION

;

;
2000$: MOVL #1,R11 ; ITER = 1
7
; TOP OF MAIN LOOP. REGISTER USAGE IS AS FOLLOWS:
i

i
;
i
i
i
i
;
;
i
i
i
LOOP :
i

7

;

;

i

102

XORW3
XORL3
CLRQ

EXTZV
BISW2
BISL2

EXTZV
BISW2
BI SL2

EXTZV
BISW2

RO =
R1 =
R2 =
R3 =
R4 =
R5 =
R6 =
R7 =
R8 =
R9 =
R10 =
R11 =

K(1) .XOR. E(R(1))
K(1) .XOR. E(R(1))
E(L)
E(L)

E(R)
WORK AREA
WORK AREA

OFFSET TO NEXT KEY
KEY ADDRESS INCREMENT
ITERATION COUNTER

INDEX TO S-BOXES

L^K EYS+4(R9),RS1R1
L ̂ K-EY - S (R9) , R4, RO
R6

#O, #6 ,RO ,R8
S 8A[R8],R7
S-8B[R8 - J ,R6

#6, #6 ,RO,R8
S 7A[R8],R7
S-7B[R8] - ,R6

#12,#6,RO,R8
S - 6A[R8],R7

; OR S - 8 INTO RESULT
i

; OR S - 7 INTO RESULT
i

; OR S - 6 INTO RESULT

BISL2

EXTZV
BISW2
BISL2

EXTZV
BISW2
BISL2

ASHQ

;

?

i

EXTZV
BISW2
BISL2

,
EXTZV
BISW2
BISL2

EXTZV
BISW2
BISL2

XORL2
XORL2
MOVQ
MOVQ

;

;

S - 6B[R8],R6
#18, #6,RO,R8
S 5A[R8],R7
S-5B[R8] - ,R6

#24 #6 RO R8
S 4A[R8],R7
S-4B [R8] , R6 -
#2, RO, RO

#O, #6 ,R1 ,R8
S 3A[R8],R7
S-3B - [R8 1 , R6
#6,#6,Rl,R8
S 2A[R8J,R7
S-2B[R8] - ,R6

#12? #6, R1 ,R8
S lA[R8],R7
S-1B - [R8 J , R6
R2, R6
R3, R7
R4, R2
R6, R4

9

; INCREMENT COUNTERS

;

; OR S 5 INTO RESULT
;

-

; OR S 4 INTO RESULT -
9

; OR S 3 INTO RESULT
;

-

; OR S 2 INTO RESULT -

; OR S 1 INTO RESULT
i

-

; E(L') = E(R)
; E(R') = E(L).XOR.F(E(R),K)

ADDL2 R10,R9
ACBW #16,#1,Rll,LOOP

,
; PERFORM INVERSES OF PERMUTATIONS E AND IP.
i

; OFFSET TO KEYS
; 16 ITERATIONS

CLRQ

BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC

i
RO

#00,R5,.+5
#20,R0,.+1
#01,R5,.+5
#12,R0,.+1
#04,R5,.+5
#04,RO, .+l
#05,R5,.+5
#30,R1,. +1
#06,R5,.+5
#22,R1,.+1
#07,R5, .+5
#14,R1,.+1
#10,R5, .+5
#06,R1,.+1
#11,R5,.+5
#30,RO, .+l
#12,R5, .+5
#22,RO, .+l
#13,R5, .+5

; PERMUTE R2,R3,R4,R5 TO R0,Rl

103

BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS

104

#14,R0,.+1
#14,R5,.+5
#06,R0,.+1
#15,R5,.+5
#24,Rl,.+l
#02,R4,.+5
#16,Rl,.+l
#03,R4,.+5
#08,Rl,.+l
#06,R4,.+5
#OO,Rl,.+l
#07,R4,.+5
#24,R0,.+1
#08,R4,.+5
#16,R0,.+1
#09,R4,.+5
#08,R0,.+1
#12,R4,.+5
#00,R0,.+1
#13,R4,.+5
#26,Rl,.+l
#14,R4,.+5
#18,R1,.+1
#15,R4,.+5
#lO,Rl,.+l
#18,R4,.+5
#02,R1,.+1
#19,R4,.+5
#26,R0,.+1
#2.0, R4, . +5
#18,R0,.+1
#21,R4,.+5
#10,R0,.+1
#24,R4,.+5
#02,R0,.+1
#25,R4,.+5
#28,R1,.+1
#26,R4,.+5
#20,R1,.+1
#27,R4,.+5
#12,R1,.+1
#30,R4,.+5
#04,R1,.+1
#31,R4,.+5
#28,R0,.+1
#00,R3,.+5
#21,R0,.+1
#01,R3,.+5
#13,R0,.+1
#04,R3,.+5
#05,R0,.+1
#05,R3,.+5
#31,R1, .t1
#06,R3,.+5
#23,R1,.+1
#07,R3,.+5
#15,R1,.+1

i
; CHECK
;

BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS
BBC
BBSS

#10,R3,.+5
#07,Rl,.+l
#11,R3, .+5
#31,R0,.+1
#12,R3,.+5
#23,R0,.+1
#13,R3,.+5
#15,R0,.+1
#14,R3,.+5
#07,R0,.+1
#15,R3,.+5
#25,R1,.+1
#02,R2,.+5
#17,R1,.+1
#03,R2, .+5
#09,R1,.+1
#06,R2,.+5
#01,R1,.+1
#07,R2,.+5
#25,R0,.+1
#08,R2, .+5
#17,R0,.+1
#09,R2,.+5
#09,R0,.+1
#12,R2,.+5
#01,R0,.+1
#13,R2,.+5
#27,R1, .+l
#14,R2,.+5
#19,Rl,.+l
#15,R2,.+5
#11,R1,.+1
#18,R2,.+5
#03,R1,.+1
#19,R2,.+5
#27,RO, .+l
#20,R2, .+5
#19,R0,.+1
#21,R2,.+5
#ll,R0,.+1
#24,R2,.+5
#03,R0,.+1
#25,R2,.+5
#29,R1,.+1
#26,R2, .+5
#21,R1,.+1
#27,R2,.+5
#13,Rl,.+l
#30,R2,.+5
#05,R1,.+1
#31,R2,.+5
#29,R0,.+1

FOR CYPHER BLOCK CHAINING

BBC #O,M ODE,2300$
BBC #0,~11~,2200$

105

MOVQ RO,I VEC
BRB 23008

i
2200$: XORL2 I VEC,RO

XORL2 I-VEC+I,, R1
MOVQ @i= ADD,I VEC - -

h300$: MOVQ RO,@O ADD
ADDL2 #8,0 XDD
ADDL2 #8 ? I-ADD -
DECL L EN
BEQL 3000$
BRW LOOPA

.

;
; RETURN VECTOR IF CYPHER BLOCK CHAINING
i
3000$: BBC #0, M ODE, 9000$

MOVQ I - VEC,@IVEC(AP)

; CBC ENCRYPTION

; CBC DECRYPTION

; STORE RESULT

6000$: RET . END

106

APPENDIX C

USERS GUIDE

I. GENERAL COMMENTS

This users guide provides a walk-through discussion of the actual
operation of the WBCN crypto services (WCS). Much of this discussion is
repeated in the instructions actually built into the processing modules
themselves. This guide must have some starting point to use as a refer-
ence. For the purposes of this guide, I have made the assumption that the
key management machine (KMM) and the various node gateways are DEC VAX
machines that have been fully configured under VMS and have the INGRES
DBMS installed and functioning properly on a logical device defined as UD;
that the operator has more than a passing understanding of VMS DCL and the
INGRES DBMS; and that an account named CRYPTO has been created on all the
machines. Further, I assumed that the CRYPTO account is a valid INGRES
user account on each machine. That covers the global assumptions for the
WCS. Following are the specifics for the three elements of the WCS.

11, THE CENTRALIZED KEY MANAGEMENT

This element of the WCS operates only on the KMM. The code f o r this
element should not be distributed to any of the WBCN nodes. The software
for this element is distributed on magnetic tape using the VMS Backup
Utility.

The f irst s t e p is to load the so f tware from the tape to the VMS files.
Create a subdirectory [CRYPTO.KEYMGR]. Use the Backup command as follows:

$ BACKUP MFAQ : CRYPTO. BCK/SELECT = [CRYPTO. KEYMGR. . . 3 [CRYPTO. KEYMGR. . .]
This command transfers all the files and structure from the Backup Save
Set CRYPTO.BCK to the VMS directory [CRYPTO.KEYMGR].

Next, set the default directory with the VMS command

$ SET DEFAULT [CRYPTO.KEYMGR]

Then issue the command

$ DIR

You should see the screen image shown in Fig. C-1 on the terminal.

Assuming that everything checks out to this point, the next step is to
create the database. This is accomplished by running SETUP.COM. You do
this with the command

$ @ SETUP.COM

10 7

$ d i r

Directory UD:ECRYPTO.KEYMGRl

DISTRIB.COM;15 ERROR.COM;3 EXTRACT.COM;lS EXTRACT.EXE;lO
INDEX.EXE;13 KEYLOAD.COM;22 LOGICALS.COM;6 NODEPAIR.ING;4
PERIOD.COM;l ROOT.COM;22 ROOT.COM;21 SETUP.COM;8
SETUP.ING;12 TAPELOAD.ING;lO UPDATE.COM;5

Total o f 15 f i l e s .

Fig. C-1. VMS directory structure resulting from loading
the save set CRYPTO.BCK on the KMM.

This process takes a little time so be patient. It is most helpful if you
have a separate system manager account active on a separate terminal at
this time. If you do, use the MONITOR utility to verify that SETUP.COM is
proceeding and not locked up because of some VMS/INGRES setup problem. If
SETUP.COM does not complete successfully, get help to determine the prob-
lems, fix them, and then run it again.

Upon the successful completion of SETUP.COM, you should be able to
verify the existence of the database named KEYMGR, using the CATALOGDB
feature of INGRES. Further, you can verify the correct creation of the
initial tables by entering the command

$ INGRES KEYMGR

This starts the basic INGRES process on the database KEYMGR. Enter a
help\g <Return> to the INGRES prompt (*>, You should see displayed the
same screen image as shown in Fig. C-2. Exit the INGRES process by enter-
ing \ q <Return>.

At this point, the KEYMGR database has been created along with the
initial tables. There are no data loaded in the database. Before proceed-
ing further, remove SETUP.COM from the system with a

This returns you to the DCL/CLI.

$ DELETE/CONF SETUP.COM;l <Return>

All of the remaining centralized key management functions are subordi-
nate to the menu-driven control DCL command procedure ROOT.COM. To proceed
with any further activity, start ROOT.COM with the command

$ @ ROOT

ROOT.COM provides an introduction discussion of its function and eventually
displays a menu of selections for the supported activities.

108

$$ i n g r e s keymgr
INGRES VAX Release 5.0/02a (vax.vms/Ol) l o g i n 13-FEB-1987 11:48:40
C o p y r i g h t (c) 1986, R e l a t i o n a l Technology I n c .

INGRES Release 5.0 (PRODUCTION)
go * h e l p \ g
Execu t ing . . .
name owner t ype name owner

p t r t a b l e i ngres t a b l e nodetabl e i ngres
k e y i ndex i ngres t a b l e p r d t a b l e i ngres

t a b l e
t a b l e

con t i nue *
*
*
*
*
*
*
*

Fig. C-2. The database structure resulting from running SETUP.COM
on the KMM.

111. LOADING KEYS

Loading keys is the next activity that logically follows the creation
of the database on the KMM. I assume that the operator has, in hand, an
NSA-distributed tape containing the actual key material and needs (wants)
to load those keys into the database.

The first thing to do is to make sure there is no write enable ring
still in the tape reel. If there is a write ring in the reel, take it
out. Next, load the tape on the tape drive. The drive must be capable of
1600-bpi transfer rate because that is how the tape was written. After
the tape is loaded and the drive is set to ON-LINE, enter the KEYLOAD
option on the ROOT menu selection.

KEYLOAD starts up with a bit of general discussion. It assumes that
the device identifier f o r the tape drive is MTAO:. If such is the case, a
(Return) is the correct response to the question. Otherwise enter the
correct tape drive device identifier. You should verify the tape drive
device identifier before starting KEYLOAD. If you do not know how to do
this, ask your system manager.

After you have responded to the tape drive identification question,
the process gives you an opportunity to actually load the tape on the drive
if you have not already done so. When the tape is loaded, the -READY-
response t o this question allows the process to continue. Any response
other than -READY- forces the process to loop on the inquiry. This process

109

is set up this way intentionally. The tape distributed by NSA is classi-
fied confidential. I decided that keyloading must be run to completion or
not started because the tape must be constantly attended. Therefore, there
is no convenient mechanism built into the KEYLOAD to cancel the process
when it is once started. I recommend it be left that way.

When the tape is loaded and ready, respond -READY- to the inquiry.
The remainder of the KEYLOAD process requires no further user interaction.
When the tape transfer is complete, KEYLOAD.COM issues a DISMOUNT instruc-
tion. This rewinds the tape. After the dismount occurs, the user must
remove the tape reel from the drive and return the reel to secured storage.
The KEYLOAD.COM procedure issues progress reports to the terminal as it
continues loading the keys from the VMS file to the database, When KEYLOAD
has completed, it returns to the ROOT.COM menu. This process loads all
the keys on the tape. There is no provision for a partial file selection.

IV. THE KEY PERIOD

The key period information management, other than initialization, is
automatically taken care of in the WCS code. Initialization is performed
using the PERIOD selection from the ROOT.COM menu.

The response t o this selection is a Query-By-Forms (QBF) frame that
displays two fields: PERIOD and DATA. Use the TAB key to move the cursor
from one field to the other. Enter a 1 in the PERIOD field and TODAY in
the DATE field. Use the escape key (ESC) to activate the menu selections
at the bottom of the screen. Write the data in the table with the GO
instruction. Then on the next pass through the query, escape to the menu
and exit the process. Continue exits until you return to the ROOT.COM
menu. The results of this action establish the beginning of the first key
period as the date you first run this process. I would recommend that you
not set up the key period until the day you first write the distribution
tapes. Otherwise the first period keys may be underutilized.

V. NODE INFORMATION

The next activity prior t o key distribution is identifying, in the
database, the participating WBCN nodes. This .is done by selecting the
UPDATE option on the ROOT.COM menu. This selection starts a QBF process
that accepts the node identification information. The critical piece of
information in the node identification is the NODENAME, This name must be
the same as the WBCN node identifier for each WBCN node. This node name
must match the response to the DCL command

$ SHOW LOGICAL SYSNODE

for each WBCN node. The key management and distribution mechanism will
reject any distribution at the specific nodes for which these identifiers
do not match.

This QBF frame operation is self-guided. Use the TAB key to move
from one field to the next and enter the information in all fields. Then

110

enter escape (ESC) to activate the menu selection. This information can
be entered, altered, or updated as necessary. It is not synchronized with
any of the other key distribution functions.

There is only one caution. Be sure that the node table is current
before starting the key extraction and distribution processes. If the
node table is not current for a given distribution, an omitted node will
get no keys and the process does not back up.

After you have finished the node identification process, exit from
the QBF process back to the main ROOT.COM menu.

VI. KEY SET EXTRACTION

The key set extraction is the first of two processes used to produce
the node-specific key distribution tapes. Assuming you have the key period
information and node information set up correctly, you invoke the key set
extraction process by entering the EXTRACT selection in the main ROOT menu.
This process is basically automatic and provides a limited functional
description and inquires if the user is ready to continue. If so, the
correct response is -READY-. Any other response will force the process to
exit and return to the ROOT.COM main menu. This EXTRACT process detects
the only really severe problem that the key distribution can have--namely,
a shortage of keys. If there are not enough keys in the master table, the
error message given in the process ERROR.COM (see code listing) is posted
to the terminal. The EXTRACT process will force exit and return to ROOT,
which will also force exit. These exits are set up so that the error
message remains on the terminal screen when ROOT returns to CLI. If you
get this error, the solution is straightforward--load more keys, at least
as many as you need f o r this distribution. The calculation

NNODES*(NNODES - l)*NBRPERIODS*NKEYS
where

"ODES is the number of WBCN nodes,
NBRPERIODS is the number of key periods, and
NKEYS is the number of keys per period

yields the number of keys needed for a single distribution. The WCS is
set to default to

NBRPERIODS = 3 and NKEYS = 20

Thus, the calculation reduces to

60*NNODES*(NNODES - 1)
If you have a problem with the NSA key sources and you need to determine
precisely the number of available keys in the master key table, do the
following:

(1) Log on to the KMM under the CRYPT0 ACCOUNT.
(2) Enter $ INGRES KEYMGR. INGRES returns the prompt (*I.
(3) Enter PRINT PTRTABLE\g.

111

The result of these commands is a display of the pointer table. Read off
of that table the PTR values associated with the attributes HIGHPTR and
LOWPTR. The difference

PTR(HIGHPTR) - PTR(LOWPTR)
is the number of keys available in the master tables.

One last comment about the error handling. The key shortage error
forces exits all the way out to CLI. You must restart ROOT.COM to load
additional keys.

Assuming that the key supply drawdown for this distribution is accept-
able, EXTRACT requires no additional operator action. It runs to comple-
tion and returns to the main ROOT menu.

VII. KEY DISTRIBUTION

The step after the key set extraction is the writing of the distribu-
tion tapes. This is initiated by the ROOT menu selection DISTRIB. Of the
WCS this is the process that demands considerable operator attention. As
a result, DISTRIB is quite verbose in providing instructions to the user.

After providing introductory information, DISTRIB determines the num-
ber of tapes that will be needed for this distribution. It then displays
the count on the user's terminal and then enters a PAUSE state waiting for
a command. When the operator has all the supplies ready, he returns a
READY instruction and DISTRIB continues. If at this pause the decision is
made to postpone this tape writing, an EXIT instruction returns to the
ROOT main menu with no other action. The distribution can then be done at
a later time.

Assuming the READY response is returned, DISTRIB.COM inquires for the
identifier of the tape drive. The process defaults to the device name
MTAO:. If this is correct, respond to the inquiry with <Return,. Other-
wise, enter the correct identifier. If you do not know the correct iden-
tifier and happen to enter some junk, DISTRIB will accept it and then
encounter a fatal error when it tries to mount the so-named device. The
code is not resistant to user error. Learn this name if you do not know
it.

Assuming the tape drive identifier is correct, DISTRIB requests the
operator to load the tape and enter -READY- when the drive is on-line. The
file transfer is automatic. The next message to the operator asks if he
wants to delete the residual files. If the tape write went correctly,
delete the files. If not, do not; they will come around again.

The last operator action is to unload the tape and label it with an
external label (as in stick-on label). The process provides the operator
ample node identification information t o write on this label.

When the tape has been removed from the drive and labeled, the oper-
ator enters -READY- to cycle the tape write through the next set of files.
The process concludes when it detects that no further files are remaining.
Keep in mind that this is determined by the deletion of the residual files.
If you do not delete these files eventually, the process will continue to
loop ad nauseam.

112

At the conclusion of the DISTRIB.COM process, the operator has a tape
for each of the WBCN nodes. These tapes are sent to the cognizant indi-
vidual at each of the WBCN nodes for further processing. That moves the
user's document to the site-specific part of the WCS operation.

VIII. THE SITE-SPECIFIC KEY MANAGEMENT

As was stated in the general comments, I assume that the site WBCN
machines have been fully configured under VMS, that they have the INGRES
DBMS installed and functioning properly, and that an account named CRYPTO
has been created with the root directory [CRYPTO] located on the UD: logi-
cal device. Further, the CRYPTO account must be a valid INGRES user
account. The software for this element has been made available on magnetic
tape using the VMS Backup Utility.

The first step is to load the software from the tape to the VMS files.
To do this create a subdirectory [.KEYUSER] in the crypto root directory.
Use the backup command

$ BACKUP MFA0 : CRYPTO. BCK/SELECT = [CRYPTO. KEYUSER. . . I [CRYPTO. KEYUSER. . . I

This command transfers all the files and structure from the BACKUP saveset
CRYPTO.BCK to the VMS directory [CRYPTO.KEYUSER]. Next, set the default
directory for the process with the VMS command

$ SET DEFAULT [CRYPTO KEYUSER]

Then issue the command

$ DIR

You should see the display on your screen that is shown in Fig. C-3.

$ d i r

Directory UD:[CRYPTO.KEYUSERI

FETCHKEY.EXE;l GETKEY.EXE;2 KEY LOAD. COM ; 1 8 LOGICALS.COM;4
SETUP.COM;5 SETUP.ING;4 TCOPY.ING;8

Total o f 7 f i l e s .

Fig. C-3. VMS directory structure resulting from loading the
save set CRYPT0,BCK on the WBCN gateway machine.

Assuming that everything checks out t o this point, the next step is
creating the database. This is accomplished by running SETUP.COM. You do
this with the command

$ @ SETUP.COM

113

This process takes a little time. It is most helpful if you have a sepa-
rate system manager account active on a separate terminal monitor at the
same time. If you do, use the MONITOR utility to verify that SETUP.COM is
proceeding and is not locked up because of some VMS/INGRES setup problems.
If SETUP.COM does not complete successfully, get help to determine and
resolve the problem.

Upon the successful completion of SETUP.COM, you should be able to
verify the existence of the database named KEYUSER, using the CATALOGDB
feature of INGRES. Further, you can verify the correct creation of the
initial tables by entering the command

Then run SETUP.COM again.

$ INGRES KEYUSER

This starts the basic INGRES process on the database KEYUSER. Enter
help\g to the INGRES prompt (*). You should see displayed the same screen
images as shown in Fig. C-4. You exit from the INGRES process by entering
\ q <Return>; this returns you to the DCL/CLI. When you are satisfied that
SETUP.COM has run successfully, delete it from the system with the command

$ DELETE/CONF SETUP. COM

$ i n g r e s keyus
INGRES VAX Re1
C o p y r i g h t (c >

, e r
ease 5.0/02a (vax.vms/Ol> l o g i n 13-FEB-1987 11:54:59
1986, R e l a t i o n a l Technology I n c .

INGRES Release 5.0 (PRODUCTION)
90 * h e l p
* \ g
Execu t ing . . .
name owner t y p e name owner t Y Pe

nodetabl e i ngres t a b l e p t r t a b l e i ngres t a b l e
k e y t ab1 e i ngres t a b l e p r d t a b l e i ngres t a b l e

con t i nue *
*
*
*
*
*
*

Fig. C-4. The database structure resulting from running SETUP.COM
on the WBCN gateway.

114

I X . LOADING KEYS

After the database is set up, the next step is loading the keys from
the distribution prepared on the WBCN KMM. This tape contains only the
keys for this specific node. The keys are loaded by running the DCL com-
mand

$ KEYLOAD. COM

This process, after some initial information, queries the operator for the
tape drive device identifier. The code defaults to a device identifier of
MTAO:. If this is correct, then a <Return> is the correct response to the
query. Otherwise, enter the correct tape drive device identifier.

The next step of the code asks the operator to load the tape on the
designated drive. When the tape is loaded and the drive is on-line, the
operator enters -READY-. Any other response causes the tape load request
to loop. This is done intentionally. The tape contents are classified.
When the decision is made to load the keys, it should be completed. After
the tape is loaded and the READY response is made, the rest of the process
is automatic. When the tape copy has ended, a message to that effect is
posted to the terminal with the reminder to the operator to unload the
tape.

The process is set to trap only one error. That error is a mismatch
between the internal tape label and the WBCN node identifier. The code
compares the response to the command

$ SHOW LOGICAL SYSNODE

with part of the internal tape label. If the two do not match, the whole
key load sequence is skipped, an error message is sent to the terminal,
and the process ends.

If this error occurs, I suggest you contact the central key distribu-
tion facility and prepare for a long discussion.

These two processes are the only ones needed for the local node key
management.

X. THE CIPHER PROCESSES

After the keys are distributed, the last component of the WCS is the
cipher processes. There are five subroutines used to supply the cipher
processes: GETKEY, FETCHKEY, cbc-cipher, XOR, and PDES. The listings of
these subroutines are given in Appendix B.

The subroutine GETKEY returns a key and a key pointer when called
with the destination node designator. The pointer is the single piece of
information that must be passed to the destination node so that it can
identify the same key. It is the responsibility of the WCP to manage the
exchange and retention of this information.

The subroutine FETCHKEY returns a key when it is called with a valid
key pointer. If the pointer is not valid, FETCHKEY returns an error con-
dit ion.

The last user interface subroutine is cbc-cipher, The details of its
calling sequence are given in the listing in Appendix B,

115

\

NTIS
Page Range Price Code

001.025 A02
026-050 A03
05 1-075 A04
076~100 A05
101-125 A06
126.150 A07

Printed in the United States of America
Available from

National Technical Wormation Service
US Department o f Commerce

5285 Port Royal Road
Springfield, VA 22 16 I

Microfiche (AOI)

NTIS
Page Range Price Code

151-175 A08
176-200 A09
201-225 AI0
226-250 A l l
251-275 A12
276-300 A13

NTIS
Page Range Price Code

301.325 A14
326-350 AIS
351-375 A16
376-400 A I 7
401-425 A18
426-450 A19

NTIS
Page Range Price Code

451-475 A20
476-500 A21
50 1-5 25 A22
526-550 A23
551-575 A24
576-600 A25
601-up* A99

‘Contact NTIS for a price quote.

-3rr

I

kl
1.Ll
63

